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Convolution—-thresholding is a new approach to describing interface motion that
unifies and generalizes Huygens’ principle, threshold growth cellular automata, and
reaction—diffusion equations. Convolution methods have many desirable properties,
including automatic capture of topological change, production of curvature motion
without explicit computation of curvature, natural extension to the motion of triple-
point junctions, and fast, accurate implementation. In this paper, we summarize the
relation of convolution—thresholding schemes to previous methods, and we review
the theoretical and algorithmic development of this approach. We also review re-
cent applications to computer vision, developmental biology, excitable media, and
material science. @ 2001 Academic Press
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1. INTRODUCTION

There are many phenomena in which sharp interfaces form, persist, and propagate.
table examples include optical or acoustic wavefronts moving through materials, the gro
of crystalline materials, the deblurring of photographic images, the evolution of detonati
fronts in explosive materials, and the propagation of excitation waves in heart and nel
tissue.

Modeling these processes often leads to equations of motion for a surface moving \
a normal speed that depends on the surface geometry. However, these models—and
numerical solution procedures—are complicated by the fact that the interfaces can mi
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or break up, or form junctions and more complicated networks. It is challenging to dev
models and associated numerical algorithms that are simple, yet robust enough to ca
such topological changes. Our focus here is on a variety of novel ways of describ
interface motion that meet this challenge, and which can be unified through the idec
convolution—thresholding.

While investigating the problem of evolving surfaces with junctions, Merriregal.
[22, 23] developed the diffusion-generated motion by mean curvature algorithm, whict
the focus of Section 3. This simple algorithm automatically evolves surfaces with a norr
speed equal to mean curvature without ever directly computing the mean curvature. Tc
logical changes such as merger and breakage are automatically handled without any sy
algorithmic procedures. Accurate, efficient discretizations are possible using adaptive
olution and fast Fourier transform techniques [32]. Finally, and perhaps most remarka
the algorithm extends directly to the motion of triple-point junctions and arbitrary networ
of surfaces [21-23, 31].

Independent of the work on diffusion-generated motion, a variety of interesting rela
methods have arisen in cellular automata modeling. (See Section 5.) Of these models
“threshold growth dynamics” of Gravner and Griffeath was among the first to be rigorou:
analyzed [12]. In threshold growth dynamics, an unoccupied site of the lattice becor
occupied if a certain proportion of its neighbors are occupied, while occupied sites
never vacated. Although simple, these automata rules generalize in a natural way
variety of systems arising in developmental biology and excitable media.

Another well-known class of models for evolving interfaces is the Ginzburg—Landau (
more generally the reaction—diffusion or phase field) partial differential equation (PD
models. These models typically represent the interface as a rapid transition layer in s
state—or “phase”—parameter which evolves by a (strong) reaction (weak) diffusion eq
tion. In such a system, the state is driven to the nearest equilibrium value of the react
exceptin the thin transition layer in which the diffusion dominates. In the asymptotic limit
infinitely strong reactions, these fronts shrink to ideal surfaces that move by mean curva
or other various geometric motion laws.

Underlying each of these models are the two processes of local averaging (or di
sion) and thresholding (or projecting to a discrete set of values) applied to a repres
ing function for the surface of interest. This can be abstracted and generalized to
convolution—thresholding motion described in Section 4. In essence, a set (and thu:
bounding surface) is evolved by convolving its characteristic function with an averagi
kernel and then thresholding to recover an updated characteristic function. General
tions for multiple kernel functions or more complicated thresholding schemes are cles
possible. These generabnvolution—-thresholding methogisovide a natural model in-
termediate between cellular automata and PDEs—it turns out they can simultaneo
achieve the long length scale limit of automata and the short length scale limit of reactic
diffusion PDEs, both of which are difficult limits to analyze theoretically or investigat
numerically.

The outline of the paper follows. In Section 2 we review the standard Huygens'’ princiy
and its generalizations. Section 3 describes the diffusion-generated motion by mean ct
ture algorithm and discusses its discretization. In Section 4, we show how these mett
can be generalized to give convolution—thresholding motion. This section also provide:
overview of the class of obtainable motion laws, discusses fast discretization methods,
reviews some interesting related methods. Section 5 describes threshold dynamic mc
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and related automata arising in developmental biology and excitable media application
is also shown that convolution—thresholding methods arise naturally as the fine grid lil
of these automata and that the fast discretizations developed for convolution—threshols
motion once again apply. In Section 6, we compare convolution—thresholding motion e
phase-field methods and review a recent convolution—-thresholding method for evolv
filaments which can be motivated as a formal splitting for the complex Ginzburg—Land
equation. A closely related method for the multiscale treatment of images is also reviev
here. Finally, Section 7 concludes with a short summary and a description of some
the interesting open problems related to convolution—thresholding methods for interf
motion.

2. HUYGENS’ PRINCIPLE

Inthis section, we review Huygens’ principle constructions for both curvatureindepend:
and curvature-dependent motions of interfaces. Later sections will show how these intuit
geometrical methods are precisely a special case of convolution—thresholding method:

2.1. Huygens’ Principle for Constant Normal Velocity

The classical Huygens’ principle is a geometric construction for moving a curve (in tw
dimensions, or in general a codimension 1 surface) with a constant normal vetotitg
principle states that the evolved curve at a tiktecan be obtained from the initial curve
by drawing discs of radius = cAt which are centered on the initial curve. The forward
envelope of these discs is the curve at time At.

For our purposes, itis more convenient to draw discs of radiasAt, centered so they
are entirely on one side of the curve and tangent to it. The locus of the disc centers fo
the new curve position after a tinhe= At. See Fig. 1.

2.2. Huygens’ Principle for Motion by Mean Curvature

The classical construction can be modified to produce a motion where the surface nor
velocity is proportional to the local mean curvature. Instead of the usual procedure, posi

FIG. 1. Huygens’ principle.
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updated curve

FIG. 2. Huygens’ principle for a curvature-dependent motion.

each disc so that exactly half igealies inside the curve to be evolved, and then take th
locus of all disc centers as the new curve, as illustrated in Fig. 2. Although this is just a sli
modification of the standard Huygens’ principle shown in Fig. 1, it yields a qualitative
different type of motion.

Clearly the most curved portions of the interface are displaced the most by this modi
process, so that it induces some form of curvature-dependent motion. A simple geom:
analysis (see Fig. 3) shows that if the local radius of curvature of the cufRedad we
position a disc of radius <« R so that it is cut exactly in half (by area) by the curve,
then the disc center is displaced normal to the curve by a disthnee?/R. We would
like this displacement to represent one time step of motion by mean curvature, so we v
d = vy At, with vy = « = L. This will indeed be the case as longras- +/At. Note that
this also explains why this geometric procedure (Huygens'’ principle for mean curvatu
uses discs of radius~ +/At, while that for constant motion uses discs of radius At.
(This distinction has practical importance for the convolution-based numerical implem
tations discussed later, since more spatial resolution is required to treat the smaller dis
the constant motion.)

2
d=1 - + higher
6 R

order terms

FIG. 3. The geometry of Huygens’ principle for motion by mean curvature.
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FIG. 4. Huygens’ principle with a general shape and a nonzero fragtion

2.3. Generalized Huygens’ Principles

Variations on Huygens’ principle can be obtained by using shapes other than dic
taking the locus of designated points other than the disc centers, and positioning the sh
fractionally outside the curve, rather than entirely outside or half in and half out. Combini
these observations, we can obtain a generalization of the geometric Huygens' princ
(see, e.g., Fig. 4):

Select an arbitrary shape (generalizing the disc of the standard principle) and an “origin point” for the shap

(generalizing the disc center), which can be any point inside or outside the shape. Allow the shape and i

associated origin to be moved in the plane only by rigid translation (not rotations). Given an initial curve,

everywhere possible position the shape so that a fragtafrts total area is enclosed by the curve. Then the
updated curve is the locus of all the corresponding origin points.

Clearly, by using nonsymmetric shapes anisotropic motions can be derived and by vary
the fractiona the relative importance of the curvature component can be changed. T
approach was fully developed, including explicit formulas for the limiting surface evolutiol
in the recent work of Ishiét al.[18]. These and other theoretical results will be summarize
in Section 4 after another closely related method is discussed—diffusion-generated ma
by mean curvature.

3. DIFFUSION-GENERATED MOTION BY MEAN CURVATURE

The diffusion-generated motion algorithm introduced in [22, 23] is a surprisingly simp
procedure for approximating motion by mean curvature of a surface without computi
curvature. In this section we give the basic algorithm and its extension to surfaces w
multiple junctions. Later sections will show how this procedure is another special case
convolution—thresholding. We also present efficient discretization techniques for diffusic
generated motion which have direct extensions to the general convolution—thresholc
schemes.

3.1. The Basic Method

It is intuitively clear that if we allow a set of points to “diffuse,” sharp corners rapidly
smooth out (e.g., Fig. 5). Based on this observation, we might expect that diffusion car
used to evolve the boundary of a set in a curvature-dependent way.
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Diffusion
—_—

FIG.5. Sharp corners are rapidly smoothed out by diffusion.

Consider, for example, setting equal to the characteristic function for some initial
region. We then apply diffusion tg,

87X=V2
ot

and consider the evolution of tl'%level contour. Rewriting using local polar coordinates
with origin at the center of curvature (see Fig. 6),

ax _lax  9°x 1%

at  rar | ar2 ' r2yp2’

we find that the motion is dominated by the radial advection and diffusion terms. (T
remaining terminvolving-derivatives vanishes to highest order, sipdelocally a function
of r only, independent of.)

Taking a radial view of the evolution (Fig. 7), we find that the first term simply advec
the initial profile with a speeé = «, while the second diffusion term smears out the profile
Because the smearing is symmetric, however, it does not affeétl’eh@l contour. Thus we
are left with an advection—diffusion equation which advances the Ievélwﬁh a speed
equal to the local curvature,

Using this simple intuition, an algorithm for moving an interface by mean curvature c
be constructed [22, 23]:

ALGORITHM DGM (Two Regions).

N
s
1
1 o 1
'

Center of curvature?
\ [
X=O \ for X ,

FIG. 6. Local polar coordinates with origin at the center of curvaturexor
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FIG. 7. Radial view of the time evolution. The radial advection term advects the initial profile with a spee
equal to the local curvature (dashed), while the radial diffusion term merely contributes a smearing to the f
result and does not affect t@elevel contour.

GIVEN: An initial region R.

BEGIN
(1) “Initialize”: Set x equal to the characteristic function for the regien
(2) Repeat for all steps:
(a) “Diffuse”: Starting fromy, evolvey for a time At according toy; = V2.

(1 if 1/2
(b) “Threshold”: x = { Tx=>1/
0 otherwise.

END

The location of the interface is given by the boundary of the set defined by the characteri
function y, or by the% level of the smootty.

Notice that this procedure can be described informally as diffusing the set for a short tir
and then thresholding at t@level to obtain a new set. As we have seen, such a diffusio
will cause a curvature-dependent blurring of the set boundary, and a formal analysis
the diffusion equation [21-23] shows that this should result precisely in motion by me
curvature. Indeed, an interesting variety of rigorous proofs have been given to show |
this simple algorithm converges to motion by mean curvature as the time step goes to .
[1, 6, 18]. Note that the rate of convergence for smooth interfaces is first order and that ir
rapid convergence is often possible using extrapolation. See [32].

This algorithm has several remarkable properties: Motion by mean curvature is obtaine
any number of dimensions without ever directly computing the mean curvature. Topologi
mergers such as pinch off, which occur in higher dimensions, are captured with no spe
algorithmic procedures. Note also that motion by mean curvature is a nonlinear evoluti
and yet the diffusive evolution is entirely linear, with the only nonlinear part of the algoritht
being the final, trivial, thresholding step.

Perhaps most remarkable, this procedure has a direct extension to the motion of mul
junctions. This extension will be the focus of the next section.

3.2. Extension to Multiple Junctions

Diffusion-generated motion has a direct extension to surfaces with multiple junctior
Let the intersecting surfaces partition the domain into regions with characteristic functic
X1, X2, - - -» xn- Note thaty ~ x; = 1 everywhere, reflecting the partition. We independently
diffuse each region—i.e., convolygwith the Gaussian—to obtain smoothed-out charactel
istic functionsy; (At). Note that these still sum to one, by the linearity of the convolution
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Sxi(At) =Y Kxxi = Kx*> xy = Kx1=1. Thus the smoothed-out characteristic
functions still partition the domain into “fuzzy” sets. To obtain a partition into geometri
sets, we simply define sétto be the set on whicly; (At) is greater than all the other
smoothed-out characteristic functions.

This approach leads to the following algorithm for the motion by mean curvature
multiple regions:

ALGORITHM DGM (Multiple (r) Regions).
GIVEN: Several region®;, 1 < j <r, which divide the domaif2 = UlEjgr R;.

BEGIN
(1) “Initialize™: Set eachy; equal to the characteristic function for the regien
(2) Repeat for all steps:
(a) “Diffuse”: Starting fromyj, evolve eacty; for a time At
according to%4 = v2y;.
(b) “Threshold": j = {1 " 1) = Mtsisr (0
0 otherwise.
END

For any timet, the interfaces are given naturally as the boundaries of the characteristic s
Note thatin the case of two regions, i.e., a set and its complement, this reduces to the ori
algorithm for x; alone becausg, = 1 — x; is not an independent quantity. It remains an
open problem to prove that this algorithm converges to motion by mean curvature for
interesting case of three or more regions.

Because the original diffusion-generated-motion algorithm uses a symmaetrazah-
parison, it produces symmetrical triple-point junctions. To obtain arbitrary desired juncti
angles anonsymmetrical comparison can be used, as describedin [21, 23, 31]. This app!
has been further generalized by Ruuth [31] to produce a normal velocity which depe
on a positive multiple of the curvature of the interface plus the difference in bulk ener
densities for prescribed junction angles (see Fig. 8). Similarly to the basic algorithm, th
generalizations naturally treat topological merging and breaking and produce no over
ping regions or vacuums. Also similarly to the basic algorithm, there are no rigorous resi

Vo3 TV 3 Koz + €93

[0

FIG. 8. The interfacesl’;, move with a velocity;; = yij«i; + &; and are subject to anglés 6,, 6;.
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concerning these methods when multiple junctions occur, but the numerical experiment
[30—32] demonstrate their convergence.

3.3. Efficient Discretizations

As outlined, diffusion-generated motion is only discrete in time. We now discuss possil
spatial discretizations for the method. Most important is that the efficient spectral me
ods described here have direct extension to the general convolution—thresholding met!
described in later sections.

3.3.1. Finite Difference Methods

A very simple way to spatially discretize diffusion-generated motion is to use a finit
difference method on a fixed grid [22, 23]. Unfortunately, this simple approach leads
several problems [23, 32].

In particular, the time stept must be large enough so that the motion of the interfac
over each step can be resolved by the spatial discretization. For the case of afinite-differ
discretizationthe level se% must move at least one grid point; otherwise the front will
remain stationarysee Fig. 9). This produces the restriction that

(speed of motion of the interface) At > grid spacing

kAt > h, (1)

which is prohibitively expensive whenevetis small.

Furthermore, even when this restriction (1) is satisfied throughout space, an extremely
grid may be needed to achieve the desired accuracy. Consider, for example, the evolutic
a smooth surface (i.e., no junctions or self-intersections) according to diffusion-genere
motion. Here, a simple Taylor-series expansion can be used to demonstrateQiiaaa)t)
error in the position of the front is generated at each step [30]. If the fungtiisrepre-
sented using a fixed grid then each thresholding produces an error which is comparab
the mesh spacing; i.e., each thresholding step producé&X(anerror in the position of
the front. To preserve the overall accuracy of the method we musthtake ((At)?).
Using a uniform mesh, this leads ©((:)?") grid points andO((:;)?") operations
per step ind dimensions, which is often impractical even for simple two-dimensione
applications.

As we shall see in the next section, these inefficiencies are easily overcome using ada
resolution and fast Fourier transform techniques.

111/000 X X X[x x x 11 1{0 00
1111000 = XXX[XXX __ = 111000
11 1/0 0 0 Diffuse x x x{x x x Threshold 1 1 1{0 0 0
1111000 X X X|xX x X 111{0 00
Initial Interface Final Interface

FIG. 9. Ifthe level set% moves less than one grid point, the front remains stationary.
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3.3.2. A Spectral Discretization

The standard discretization of diffusion-generated motion can be expensive, even
simple two-dimensional applications. Fortunately, much faster results can be obtained u
a simple spectral method on adaptive grids [32].

To begin, a method is needed to solve the heat equation,

Xt = VzXa

repeatedly over intervals of lengttt. This is accomplished using a Fourier series. Notice
thaty is initially discontinuous so it will contain a high-frequency error from truncating th
Fourier series. However, we only requjrafter a timeAt. After a timeAt, high-frequency
error modes have been damped out. Since the problem is linear, the various modes d
interact—thughere is never a need to approximate the high-frequency componepts of
Thus a Fourier series is an excellent choice, because far fewer basis functions are req
than might otherwise be expected.

The thresholding step is also straightforward. Using the usual orthogonality condition:
is easy to show that the Fourier coefficients of the characteristic function after thresholc
are

Cik = //exp(—Znijx)exp(—Zniky)dA, (2)
R

RI X: ’t

is the approximation to the phase we are following.
To complete the discretization, the integrals (2) must be evaluated. These are accur:
and efficiently treated using the quadrature methods described in [32]. Briefly,

e If R(t) is a square, the integration step is carried out exactly. More general regic
are treated by dividing the domain into small squares (see, e.g., Fig. 10) and summinc
contributions from each. At the finest level, the contributions to the Fourier coefficients :
approximated using a quadrature over triangles.

e During mesh refinement, a large number of unequally spaced function evaluations
required (see, e.g., Fig. 10). Because the fast Fourier transform requires an equally sf
grid, fast implementations use a recent unequally spaced fast Fourier transform me
[2]. This method is also used for the rapid evaluation of the Fourier sums that arise in
quadrature steps of the algorithm.

We now consider how this discretization compares with the usual finite-difference approe

3.3.3. Comparison

This spectral discretization is preferred over finite-difference discretizations of diffusic
generated motion for several reasons [32]. These reasons are outlined below.

1. Alattice-based method must satisfy (1) globally, or part of the front may erroneou:
remain stationary. By recursively refining near the interface and interpolating at the fin
cell level, the spectral discretization eliminates this restriction.
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FIG. 10. Integration is carried out by dividing the domain into squares. Contributions from all but the fine
regions can be evaluated exactly.

2. An unwanted anisotropic component to the motion is generated whenever a reg
lattice is used since the front must travel an integer number of cells per time step. No s
restriction occurs with the spectral approach since interpolation is used to locate the fi
at the finest cell level.

3. A lattice-based method produces an irregular error which makes the constructior
higher order accurate, extrapolated results impractical. Because the spectral discretiz:
uses interpolation to locate the front at the finest cell level, the error arising from the thre
olding step is relatively small. In many instances, this makes an accelerated convergen
the limiting motion law possible using Richardson extrapolation in the time-step size. S
[32] for further details.

4. Far fewer operations are required to obtain an accurate representation of the f
using the spectral discretization. Here, the proposed method requires only

1
O — log?(At
( At 0g°( ))
operations per step to preserve the overall accuracy of the method [32]. This compares

favorably to the result for smooth curvey1/(At)*), which was derived in Section 3.3.1.

In practice, finite-difference or pseudo-spectral methods on a uniform grid are often a
guate for obtaining crude but illustrative results (e.g., [21-23, 35]). However, adeemate
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solutions are sought(3% relative error) the spectral discretization is preferred. Indee
a finite-difference discretization on a uniform grid often requires hours of computation
obtain the same relative error that a spectral discretization obtains in a few seconds.
[32, 34] for some sample calculations illustrating this property.

4. CONVOLUTION-THRESHOLDING MOTION

We now show how the general framework of convolution—thresholding motion of surfac
unifies the geometric Huygens’ principles with the analytic method of diffusion-generat
motion by mean curvature. This section also gives recent generalizations of the basic me
and discusses their discretization. We also review related methods that have appeared
literature.

4.1. Huygens’ Principle as Convolution—Thresholding

The Huygens’ principle described in Section 2 is a geometric technique for moving
curve or surface. As the first step toward generalization, this geometric construction
be translated into an analytic form. We represent curves as the boundaries of regions
in turn represent regions by their characteristic functions, i.e., functions that are 1 on
region and O off the region. We represent the discs (or any other shape) used to advanc
front by their characteristic functions as well. Suppose the original region has character
functiony, and letK be the characteristic function for the motion-generating shape, scal
so that it has unit mass. Letdenote the convolution,

xiKoo = [ xKo=y)ay. 3

Then for constant normal motion, the updated region in Huygens’ construction can
defined as

{x: x *x K(x) > 0}, 4)

and the updated curve is the boundary of this region. Similarly, for motion by mean curvat
the updated region in Huygens’ construction can be defined as

1
{XZX*K(X)>E}. (5)
For example, for the Huygens' principles using discs in 2-D, the kernel is the (normalize
characteristic function for a disc of radiuscentered at the origin,

1

K0 —= X <r ©)
X) =
0 otherwise

wherer ~ /At for motion by mean curvature, or~ At for constant normal motion.

Thus, the geometric Huygens’ principle is equivalent to the analytic procedure of cc
volving the characteristic function for the original region with an appropriate kernel functic
and obtaining a new characteristic function from this via thresholding.
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4.2. Diffusion-Generated Motion as Convolution—Thresholding

The diffusion-generated motion [22, 23] can also be viewed as a convolutio
thresholding algorithm. If the initial surface bounds a region with characteristic fungtion
then the solution to the linear diffusion equation at a tintdlater isy * K, whereK is a
Gaussian of width/At,

1 1
Kx) = K§'x = ey exp<—4m|x|2> ,

and the updated surface is the boundary of the region

1
{XZ)(*K(X)>§}. (")
Indeed, any positive, radially symmetric kernel may be used in place of the Gaussial
obtain a convolution-generated mean curvature motion, as was pointed out by Merrir
et al.[22] and proven rigorously by Ishii [17]. Thus diffusion plays no deep special rol
in generating the motion by mean curvature and probably obscures the greater signific:
of the convolution. The main value of the diffusion PDE description of the convolutio
process is that it allows a convenient formal analysis, as was indicated in Section 3, ar
highlights the connection with phase-field models, as described in Section 6.

4.3. Convolution—Thresholding Motion

Based on the update rule (4), it is clear that we are interested in more general form
convolution-generated motion. In particular, it is natural to consider the following gener:
izations of (7):

1. Allow different convolution kernel function&;. The method formally allows arbitrary
kernel functions, and asymmetrical kernels can be used to produce anisotropic motion I:
as originally suggested in [22]. Without loss of generality, we shall assume that the ker
has been normalized to satisfiK (x) dx = 1.

2. Allow a general threshold,, in {x: x * K(X) > A}. This provides a continuum of
convolution—thresholding methods parameterized lay[0, 1) with A = 0 corresponding
to the standard Huygens' principle for constant motion (see [33])2»&!&0% corresponding
to motion by mean curvature. In generatan also be allowed to depend on other quantities
For example, a variety of, = a + bx diffusion-generated motions can be obtained with
A= 7+ /At [18, 21, 31], sor = A(At) is a useful form. More generally, may be
selected locally as a function of the normal direction defined by the level sé&tsof to
achieve an interesting variety of anisotropic motions [33].

These generalizations produce semidiscrete methods—i.e., continuous in space bu
crete in “time”. To determine the corresponding continuous dynamics, we must somer
introduce a time step and clarify what it means to take the small-time-step limit (assum
such a limit exists). Intuitively, the time step is determined by the effective size of tl
support ofK, since the larger the effective supportlof the further its convolution will
move the set boundary. Thus the small-time-step limit is obtained by scaling daw
suitable fashion. More precisely, let us scale the fixed kelkr@) by the mass-preserving
form K (x/r)/r9, so that the effective radius of its support scalestike 1. By convolving
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this scaled kernel witty and thresholding the result at the set boundary is displaced
by an amount that is some function of s(r). If we demand that in the limit of small

r this displacement be one time step of some limiting motion &), = v, At, this fixes
the relation between the size of the kermmeland the time stepAt. Note, in particular,
that if K is a Gaussian kernel with effective support of sizéhis general procedure yields
At ~ 12, This is precisely the scaling relation between kernel size and time step used in
diffusion-generated case discussed above, although there it can also be motivated b
simple fact that diffusion for a timat will smear (and thus move) the set boundary over :
distanca ~ +/At.

4.4. Obtainable Motion Laws

It is natural to ask what motion laws arise from convolution-generated motion and h
the radius of the kernel scales witit.

In the case wherK is nonnegative and = 0, convolution-generated motion reduces to
Huygens’ principle for the curvature-independent motion described in Section 2. Notice
particular that if we assume that each update corresponds to one time step ofAéngth
then and hence&K have radii which scale liket.

Another interesting case occurs in two dimensions wheﬂ% and K is the scaled
characteristic function of a symmetric regigh (i.e., V' = —N). If we definer (9) to be
the polar representation of the boundary\6fthen it is easy to show that a leading-order
approximation of the displacement of a smooth initial boundam?i8)« /6 [33]. Thus
general “anisotropic curvature motions” of the form

vn = b(@)x (8)
are obtained simply by taking

r(0) = \/6b(0)At.

Similar to the case of constant motion, this algorithm also has a simple geometric vers
[33]:

Using only translations, place copies.f so that exactly half of their area lies inside the original region.
The locus of shape centers forms the boundary of the updated set.

A combination of these two types of motion can be obtained by varying the thres
old, A. This class of methods has been studied in the recent and comprehensive v
of Ishii et al. [18] for the case wher& is a constant o = A(At). They give explicit
formulas for the limiting surface normal velocity, in terms of various moments of the
kernel function, in any number of dimensions. Moreover, they also give rigorous proof tt
the convolution-generated motions converge to their stafedotion laws in the limit as
At — 0.

One notable implication of their results is that it is impossible to obtain many interesti
curvature-dependent motions in three dimensions with this class of generaliZafions.

% Note that the converse is also true. Itis not possible to approximate many interesting convolution—threshol
combinations using finite-motion laws. See Section 5.4 for an example.



692 RUUTH AND MERRIMAN

example, consider motion hyeighted mean curvatufe.g., [16, 38]),

82)/ 827/
Un = <V+&012>K1+ <V+8022)K2, )

wherey represents the anisotropic surface enefgy, are the principal curvatures of the
surface, and¢;} are the associated local angles made by the normal vectors along
principle circles of curvature. Such motions can only be obtained i constant—in
which case the original diffusion-generated motion algorithm applies. The origin of tr
limitation in more than two dimensions can be understood by a straightforward geome
analysis [33]. Briefly, when a nonspherical Huygens’ shape is positioned to be some frac
inside the surface, the principal curvatures of the surface have independent, and gene
different, influences. Thus the motion cannot depend only on the symmetrical combinat
k = (k1 + k2), and motion laws of the forma(h)« with nonconstanib are not possible. The
same is true for other forms that require constrained combinations of principal curvatul
such as the surface-tension-weighted mean curvature.

4.5. Extensions

To produce more general motiorismay be allowed to depend on other quantities. Fol
example, in [33}. is defined locally as a function of the normal direction to obtain motion
in two dimensions of the form

vn = a(@) + b(O)«,

whereb is nonnegative and continuous.

Even more generally, multiple-kernel algorithms may be desired since these provic
convenient way to generate interface velocities that are unobtainable with single kerr
(e.g., anisotropic mean curvature motion in more than two dimensions). In this approe
the characteristic function is convolved with multiple kerngls, K1, x * Ko, ..., x * Ky,
and these are combined in some convex combination or differencing combination prio
the thresholding stage. For example, suppose that we wish to evolve a surface accordi
a normal velocity

vn = b(A)x, (10)
where 0< bmin < b(A) < bmax SetKmin equal to the heat kernel for
Xt = bminV?x
andKax equal to the heat kernel for
Xt = BmaxVx
for a time-step size oAt. Thresholding the convex combination
(1 —©)x * Kmin + Cx * Kmax

at the Ievel% then produces a velocity proportional to mean curvafareany constant
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t = 0.00000 t = 0.00200

t = 0.00375 t = 0.00575

FIG. 11. A normal velocityv, = (1 + /Nn? + nZ + sin(zny))«.

0 < c < 1. (This observation follows from Ishii [17], since the effective kernel is positive
symmetric, and decreases exponentially quickly away from the origin.) In fact, it is eas
shown (cf. [21]) that a normal velocityk is obtained if

b— bmin
B b— bmin + v bminbmax+ b\/ Bmin/Bmax.

C

To produce motions of the desired form (10), we simply sddeetb(fi) locally as a function
of the normal direction of the level sets pf« K. See Fig. 11 for an example.

As a final observation, nonlocal choices foalso produce interesting flows. For exam-
ple, volume-preserving motion by mean curvature [3, 29],use= ¥ — k wherex is the
surface average of the mean curvature, is realized by selecting the level surfaeekof
that encloses the same volume as the original set in diffusion-generated motion, instes
the% level [30]. Convergence of the three procedures discussed in this section has |
demonstrated numerically, but not proven analytically. Given its simplicity, it would be e
pecially interesting to obtain a proof for the volume-preserving diffusion-generated moti
by mean curvature.

4.6. Numerical Approximation

Perhaps the most obvious method for approximating convolution generated motio
pseudospectrally. Using this approach, functions are represented by their values
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regular lattice of grid points. This makes the thresholding step trivial since it can be carr
out pointwise. The convolution step is also straightforward since it reduces to a multiplic
tion in Fourier space using fast Fourier transform (FFT) methods. Unfortunately, howev
this simple approach is rarely adequate because of the strong grid effects discusse
Section 3.3.3. See [34] for an example.

For fast, accurate results, the discretization given in Section 3.3.2 may be used. Brie
the characteristic function for the initial region and the kernel are approximated by Four
tensor products. Multiplying in Fourier space then gives a simple estimate for the convolut
product. The Fourier representation of the characteristic function for the updated regio
then determined using an adaptive quadrature method rather than a pseudospectral me
Note that the convolution step acts as a filter, removing high-frequency components. S
this convolution step is linear, the different Fourier modes do not interact and there is ne
a need to treat the highest frequency components. Thus, an excellent approximatic
obtained using fewer Fourier modes than might otherwise be expected. See [33, 34]
some examples and full details.

4.7. Related Methods

The “spatially continuous automata” of MacLennan [19] are another independent de\
opment similar to diffusion-generated motion. They arise from cellular automata, again
a method intended to capture the smoother, long-wavelength aspects of automata patt
MacLennan achieves this simply by taking continuous versions of the spatially discrete
pects of cellular automata evolution. The resulting method consists of taking a continu
initial data function, evolving for a discrete time step by convolving it with a continuou
convolution kernel, and then applying a continuous pointwise sharpening step that te
to undo some of the blurring of the convolution step. This procedure is quite similar
diffusion-generated motion (and the general convolution—thresholding motion we pres
in this section), except for one minor but crucial distinction. The simple asymptotics tt
yield motion by mean curvature in diffusion-generated motion arise precisely because
initial data are the discontinuous characteristic function, and because the sharpening
is discontinuous, replacing the blurred-out characteristic function by a new discontinuc
characteristic function. Replacing these by continuous analogues destroys simple shar
terface motions in the first few time steps. Thus, these spatially continuous automata dc
tend to yield well-behaved limiting interface motions amenable to asymptotic and rigorc
analysis, although they do produce an interesting and varied class of evolutions.

5. CONNECTION TO CELLULAR AUTOMATA MODELS

Cellular automata are discrete dynamical systems. They consist of a lattice of sites,
of which may take on a finite number of “states,” or values. The site values evolve
synchronous, discrete time steps according to an evolution rule that specifies the upd
value in terms of the current values at neighboring sites [44].

In this section we review a particularly fundamental class of automata models—t
threshold dynamics—and discuss some of their mathematical properties. As we shall
convolution—thresholding motion arises naturally as the fine grid limit of these automa
giving a numerically and analytically tractable link between cellular automata models a
the smooth features of pattern dynamics. We conclude this section with extensions to mo
for pattern dynamics in developmental biology and excitable media.
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5.1. Connection to Threshold Dynamics

Animportant class of automata can be obtained by imagining each neighbor’s contribu
to be a simple “vote” for or against a certain state value of the site in question; any hum
of affirmative votes above a certain threshold will yield that outcome. For example, consi
a simple voting automaton where there are two states, 1 and 0. A sum of the cell’'s own \
and that of its eight nearest neighbors is formed. Where this sum is greater than or e
to the threshold valugthe cell is assigned state 1; elsewhere itis assigned state 0. By der
ing the state of cel{j, k) at time stem by Cjj, we obtain a simple analytic representation
for the automata model,

et J 1 T gy Ol e = 4
I 0 otherwise,
wherea represents the threshold value.

More generally, each vote can be assigned some weight. LéttiagZ? be the neigh-
borhood of interest and/ be the matrix of weights, we obtain the update rule for threshol
dynamics,
cnil _ Lot 3 ken Wik Gl j ke = 4 (11)
k= :

0 otherwise.

Note that the functiorC is precisely the characteristic function of a set on the lattice
and the combination appearing above is precisely the discrete convollitio®V with
the discrete kernel functiow/. Thus these threshold automata can be viewed as discre
versions of the convolution-threshold method. Moreover, they can also be viewed as
crete approximations to continuum convolution—threshold models, and this is a conven
framework for understanding the long-wavelength aspects of automata pattern format
as described in the next sections.

5.2. Connection to Limiting Shapes

Anatural and very interesting problemisto find the limiting shapes for threshold dynam
and related automata models. In an early paper, Packard and Wolfram [25] found that

Most two dimensional patterns generated by cellular automaton growth have a polytropic boundary th:
reflects the structure of the neighborhood in the cellular automaton rule. Some rules, however, yield slow
growing patterns that tend to a circular shape independent of the underlying cellular automaton lattice.

To derive a more detailed, rigorous theory, Gravner and Griffeath [12] developed ¢
studied a class of set-evolution algorithms of a form somewhat similar to that of the threst
dynamics. In these “threshold growth dynamics” an unoccupied site becomes occupie
a certain proportion of its neighbors are occupied, while occupied sites are never vacs
The main goal of this work was to prove that such discrete evolution rules lead to a cer
asymptotic limiting shape for the evolving set as time (the number of iterations) gc
to infinity. Gravner and Griffeath accomplish this in full rigor and generality, both on
continuum and a lattice.

In continuum terms, and from the viewpoint of convolution—thresholding motion e
developed in Section 4, we would say they were analyzing a discrete approximation |
certain continuum convolution-generated motion. If the continuum convolution kernel we
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known, then an anisotropic surface normal velocityigw= a(f) could be determined from
the general kernel-velocity relations obtained in [18]. From this normal velocity, the limitir
shape would follow by the classical geometric Wulff construction [24]. As an aside, nc
that at the continuum level it is a classical observation about crystal growth (dating bacl
Gross in 1908) that such anisotropic velocity laws result in well-described limiting shag
ast goes to infinity and that the geometric Wulff construction on the funation yields the
corresponding shape. However, rigorous proofs of this did not appear until recently. A sim
direct proof for the standard continuum formulation, as well as more detailed discussion
references, are contained in a work of Osher and Merriman [24]. See alsetlghij18]

for recent results about the asymptotic shape of fronts propagating by threshold dynar
and Gravner and Griffeath [13] for some simple growth rules with more complex iterat
which can nevertheless be determined by a combination of computer experiment and €
recursion.

5.3. Relation to Finite-Grid Effects in Automata

Notice that threshold dynamics can be viewed as a method for evolving interfaces si
the boundary between state 0 and state 1 represents a crude interface that is evolved by
update step of the algorithm (see, e.g., Fig. 12). An interesting question is how to selec
appropriate neighborhood and weight values to model a desired front motion.

In early cellular automata, a neighborhood of nearest neighbors on a uniform latt
was selected. This choice has the advantages of speed and simplicity but is inadequa
modeling many interesting natural phenomena. In particular, rules which use these s
neighborhoods are unable to model the effects of curvature on the speed of propagatior
42]. The reason for this can be understood by referring back to the section on the Huyg
principle for mean curvature motion, where we showed that the size of the neighborh
must scale likeD (v/At), which is much larger than tH@(At) scale neighborhoods required
for constant normal motion. These simple automata also add grid-based anisotropy tc
front motion [36]. See Fig. 13 for an excitable automaton with a strong grid-based anisotrc

In an attempt to reduce grid effects, several modifications of cellular automata suct
random grids, stochastic local functions, and asynchronous evaluations have been desi
Based on extensive numerical experiments,dafisch [36] found that random grids are
the most useful of these, but that even these randomized methods have deficiencies
a theoretical or a practical point of view. In particular, fluctuations in the front occur fc
random grids and these “fluctuations become more prominent for higher values of thresh
[36]. Thus, while randomized methods do produce a marked improvement in the isotrc
of automata, they are still not adequate for many problems of practical interest.

0/0j0j0oj0jojo _ )
ololololofT1 -~ Crude interface

0|0 |0 FFEET T that is evolved by each
OO (1|1 |1]|1 update step of the

0 Ehs{rle{Ial NIl algorithm

(O L s B D g e B B

FIG. 12. Threshold dynamics can be viewed as a method for interface motion.
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FIG. 13. Spiral wave in the excitable automata model [5]. There are six states, 0 through 5. If any cell is
state 5 it is set to state O (resting). Any other excited or refractory (i.e., nonzero) state is incremented by 1. If a
is resting and one of its four neighbors is excited (state 1), then the cell becomes excited; otherwise it remai
rest. White corresponds to state 0 and black to state 5.

Alternatively, reduced grid effects and animproved curvature contribution can be obtait
by refining the lattice and taking larger neighborhoods [8-12, 15, 20, 39, 40]. In the lir
as the lattice is refined and larger and larger neighborhoods are used the summation
leads to a convolution

CxW(X) = /R COHW -y dy,

whereC is the characteristic function for the initial region in the fine grid limit and
RY — Risthe fine-grid large-neighborhood limit of the discrete convolution function. Tht
in the limit relevant for eliminating lattice effects from the automata, threshold dynami
becomes convolution—thresholding (4).

Note that this means that the limiting motion can be accurately and efficiently trea
using the methods outlined in Section 4.6. Alternatively, it is possible to approximate
sum pseudospectrally [34] or with a number of one-dimensional convolutions [9-11,
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39, 40]. However, these methods use a pointwise thresholding so each step displace
front a distance which is comparable to the mesh spacing. This leads to strong grid eff
that are often unacceptable in practical applications.

5.4. Application to Developmental Biology

Threshold dynamics have arisen in a variety of disciplines in developmental biology [!
For example, Young devised an interesting model of vertebrate skin patterns which is bz
on local activation and inhibition [45]. This model assumes that cells are in one of tv
states—differentiated (colored) and undifferentiated. Each differentiated cell produces:
diffusive chemicals: a short-range “activator” and a longer range “inhibitor.” The activat
stimulates the differentiation of nearby undifferentiated cells and the inhibitor stimulat
nearby differentiated cells to become undifferentiated. The combined effect of these
chemicals is modeled as the weighted difference of concentrations.

To discretize this continuum model, Young uses an automaton. The convolutional fo
of Young’s automaton is easily derived [34]. Simply set

X:Rd—>R

equal to the characteristic function for the differentiated regibrand define the updated
region,Q"" to be the set

Q"W = Ix: x * K(X) > 0}

for the kernel functionK. The kerneK is not refined withAt since the time evolution of
the model is naturally discrete.

A variety of patterns are possible by varying the threshold, the size and symmetry
the neighborhood, and the relative weights of the activator and inhibitor [45]. For exa
ple, the steady patterns given in Fig. 14 arise from a kernel that represents the differe

0.4 06
Initial State Final Pattern

FIG. 14. Isotropic pattern formation after 100 steps starting from a random checkerboard pattern. In t
case, the kernel consists of the difference of two Gaussian distributioos:y) = @’exp(—ZSOQxF) —
1220 exp(— 220x(2) '
3 3 :
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of two symmetrical Gaussian distributions. Stronger contributions of either activator
inhibitor tend to generate spotty patterns, while nonsymmetrical kernels can produce
teresting striped patterns [45]. Note that solutions to this convolution-based model
efficiently obtained using the discretization methods of Ruuth [32]: Onlyx1228 basis
functions were required to obtain the steady patterns in Fig. 14 whereas a lattice of 204
2048 grid points is required using an automaton-based discretization. See [34] for furi
details.

It is interesting to note that similar convolution—thresholding schemes have also ari
in neural models for the visual cortex. For example, Ringetchl. develop a convolution—
sharpening model for the study of simple cells in the primary visual cortex of cats a
macaque monkeys [27]. Note, however, that these authors seek solutions to the inte
ing inverseproblem of determining a kernel function, based on experimental input ima
sequences and output spike trains. In particular, they propose a hew subspace revers
relation technique which has several advantages over standard white-noise techni
including an improved signal-to-noise ratio, increased spatial resolution, and the possib
of restricting the study to particular subspaces of interest. See also Swindale for a rel
model for generating patterns of ocular dominance in the visual cortex [37].

5.5. Application to Excitable Media

In the biological and physiological literature, the best-known examples of cellular &
tomata are the excitable media [5]. In an excitable system, a sufficient stimulus (i.e., ab
some threshold value) leads to a large response followed by a period of recovery to a s
rest state. Arexcitable mediuris a spatially distributed excitable system coupled in such
way that excitation can provoke excitation in neighboring regions. Note that these syste
often experience a recovery mfractory period during which the medium is unable to be
reexcited regardless of the size of stimulus. Examples of excitable media arise in dive
physical, chemical, and biological systems including models for nerve cells, muscle ce
cardiac function, developmental biology, chemical reactions, and star formation. See [5,
41, 43] for further details and references.

In early cellular automata models for excitable media, update rules were based on
values in a neighborhood of nearest neighbors. Because this choice produces waves v
propagate at a speed of one cell per time step, several serious shortcomings occur [9
The most serious of these are [15, 40]:

1. The speed of propagation does not depend on the extent of recovery of the medil
2. The speed of propagation does not depend on the wavefront curvature.
3. Unwanted anisotropy is added to the front motion. See, e.g., Fig. 13.

To treat the first shortcoming, more recent automata select threshold values accor
to the recovery of the medium [8-11, 15, 20, 39, 40]. Averages over large neighborho
are used in an attempt to reduce unwanted anisotropy and to obtain an approximatic
the curvature component of the motion [8-11, 15, 20, 39, 40]. Typically, this averagi
step is carried out either directly [8, 20] (which is slow but general), using a number
one-dimensional convolutions [9-11, 15, 39, 40] (which is efficient but specialized),
pseudospectrally (which is efficieahdgeneral—see [34]).

Consider, for example, the excitable automata introduced in Gerbaralt [9-11],
Weimaret al. [39, 40], and Henze and Tyson [15]. In these automata, update rules
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chosen to mimic the dynamics of a two-variable system of reaction—diffusion equation:

ou 1

— = Zf(u,v) + D,V
ot €

ov

Fri g(u, v) + D, V2,
wheree is a small parameter anfdu, v) andg(u, v) specify the local kinetics of the system.
Note that the scalar (the excitation variable) changes on a time scale which is much fast
than the scalaw (the recovery variable). To derive the corresponding automaton model, t
reaction—diffusion system is split in a nonconvergent way into four steps which are carr
out sequentially (see [34, 40] for details):

1. The excitation variable is diffused.

2. The diffused excitation variable is thresholded to O (resting) or 1 (excited) accordi
to the value of the recovery variable, i.e.= A(v).

3. The recovery variable is evolved according to the local kinetics.

4. The result from Step 3 is diffused to give the updated recovery variable.

Finally, the discretization is completed by representirendv by their pointwise values
on a regular lattice.

The advantages of this automaton over earlier models are clear. Since large neighborh
are used, the motion of the wavefront will exhibit fewer grid effects (i.e., reduced anisotrof
and will have an improved dependence on curvature. Furthermore, the wave speed
depend on the extent of recovery of the medium since thresholding is carried out accort
to the value ofv. Indeed, simulation results reported for FitzHugh—Nagumo kinetics [1-
and the Oregonator model [40] agree well with PDE simulations for the period, waveleng
and motion of the tip of the spiral wave for a wide range of parameters. When compare
PDE simulations, the automata model has the practical advantage that it ignores the de
of the fast kinetics so that “the time step in the cellular automaton can exceed that in P
simulations by 1 or 2 orders of magnitude” [15].

Note that discretizations which use a pointwise thresholding should be avoided bece
this type of thresholding displaces the front a distance which is comparable to the m
spacing. Fortunately, an improved discretization is easily obtained [34]. Steps 1 an
above are trivially treated using the discretization methods of diffusion-generated mot
(see Section 3.3.2). The evolution of the recovery variable is similar, except that we must
Gaussian quadrature rather than exact integration to evaluate the Fourier coefficients. Sir
to automata-based discretizations, this approach allows very large time steps (relativ
PDE simulations) since it ignores the details of the fast dynamics. Relative to automz
based discretizations, however, it is clear that this spectral discretization gives a m
more accurate treatment of the front since it recursively refines near the interface .
interpolates at the finest cell level. This allows for accurate estimates of quantities defi
on the interface and is particularly valuable for computing curvature-dependent motio
Furthermore, discontinuities and unwanted anisotropy in the front motion are elimina
since interpolation is used to locate the front at the finest cell level. Finally, this discretizati
has the benefit thatt can be selected independently of other parameters, unlike the methe
proposed in [9-11, 15, 39, 40]. See Fig. 15 for an evolving spiral wave which was compu
using these fast methods.
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FIG. 15. Excitation variable for two interacting spiral waves. See [34] for details.
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6. CONNECTION TO PHASE-FIELD PDES

As we have seen in Section 4.2, diffusion-generated motion by mean curvature is a sp¢
case of convolution—thresholding. We will show in turn how the diffusion-generated moti
methods are related to phase-field models and thereby establish the general conne
between convolution—thresholding and phase-field PDE models. We also show how
connection can be used to motivate a recent approach for evolving filaments with a nor
speed equal to curvature. A closely related method for evolving orientation vector field:
also reviewed.

6.1. Phase-Field and Diffusion-Generated Motion

The diffusion-generated motion procedure of alternately diffusing and thresholding
reminiscent of an operator-splitting approximation of the (real-valued) Ginzburg—Land
equation,

1
U = VU — Su(u® - ).
€

In this PDE model, a reaction front of widéhdevelops, separating large regions of constan
equilibrium states for the reaction, i.e., wherez 1 oru ~ —1. In the asymptotic limit

€ — 0 of a strong reaction and weak diffusion, the reaction front moves by mean curvat
[7]. At a formal level, by splitting the process into separate time steps of diffusion ai
reaction, and driving the reaction step to equilibrium (i.e.,.sed to be the closer of
the equilibrium states-1 and 1) we arrive at the diffusion-generated motion by mear
curvature algorithm. Thus (ast — 0) in this formal time splitting we actually achieve the
asymptotic mean-curvature motion of the phase-field model. Moreover, the split proces
considerably simpler than the nonlinear PDE dynamics, as it consists of just linear diffus
and thresholding, and since there is no development of artificial d{all spatial length
scales.

From a theoretical and computational standpoint, this phase-field model has the bel
that topological shape changes such as merger and pinch off are treated automatic
Unfortunately, if phase-field PDEs are used in computation it is necessary to resolve
thin O(e) wide reaction zone to obtain numerical accuracy [23]. In contrast, diffusiot
generated motion does not have this artificial small scale. Thus diffusion-generated mo
has in effect passed to the asymptotic limit of the phase-field class of models, a simplif
and more accurate evolution scheme being obtained in the process.

More generally, this suggests the formal “meta-principle” that we could replace cert:
phase-field PDE models whose asymptotic limit produces an interface motion by a diffusi
generated motion procedure that achieves the limiting motion (inthe- 0 limit) without
any artificial small spatial scales. The process would be to simply do the linear diffusi
evolution on a suitable representing function whose values are all equilibrium states,
whichis singular atthe ideal interface, and then threshold by projecting smoothed-out val
back to the equilibrium states of the reaction. It is an open question as to how gener
valid this meta-principle is, but as is illustrated below for filaments, it seems to have so
general validity.
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6.2. The Diffusion-Generated Motion of Filaments

Interestingly, the idea of treating phase-field equations in a formal split-step manner
also be used to produce a diffusion-generated method for the curvature mdilamehts
in three dimensions (or, more generally, 1-D filaments in any number of dimensions,
evenk-D “filaments” moving in a higher dimensional space, for example by general vect
mean-curvature flow) [35].

Consider the complex Ginzburg—Landau equation

1
U = V2u— Su(u® - 1),
€

whereu(x, t), x € R3, is a complex scalar andis a small positive parameter. In this PDE
model, the filament is given by the curve whéugvanishes, which is in a tube of width
outside of whichju| ~ 1. Notice that the Laplacian term dominates in a neighborhood «
width € of the filament, while farther away the reaction term dominates (see Fig. 16). In 1
asymptotic limite — O of a strong reaction and weak diffusion, the filament moves in th
principal normal direction with a speed equal to its curvature [28].

Similar to the case of diffusion-generated motion, a formal splitting method can be appl
to the complex Ginzburg—Landau equation to obtain an algorithm for evolving filamet
[35]. This “diffusion-generated motion by mean curvature for flaments” alternates o
step of normalizingu (i.e., replacingu by u/|u|, which is a natural generalization of the
usual(x — 1)/|x — A| thresholding step) with a step of diffusion over a timé. The
corresponding algorithm evolves the filament in the Frenet normal direction to the cu
with a speed equal to curvature, and it naturally captures topological merging and breal
of filaments without fattening curves. It also gives an improved computational efficien
over direct numerical simulation of the Ginzburg—Landau equations because it obtains
€ — 0 limit of the phase-field model without this artificial, small scale.

See [35] for a variety of interesting numerical experiments and generalizations as v
as an asymptotic analysis justifying the convergence of the algorithm.

Au is important .
reaction term

n an €-nbhd drives u-=u/lul

f the filament

filament is given by u=0
or by the center of winding of u

FIG. 16. The filamentis given by = 0, or the center of winding af. In ane-neighborhood of the filament,
the Laplacian term dominates. Further away, the reaction term drites/|u|.
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6.3. Orientation Diffusions

Independent of the work on diffusion-generated motion, Perona [26] developed &
studied a diffusion-based algorithm for evolving orientation-like quantities. His motivatic
was to develop methods appropriate for smoothing noisy data, analyzing images at mul
scales, and enhancing discontinuities for applications in image processing and comg
vision. In particular, he was interested in problems where the important information
contained in the orientation of lines, rather than the brightness values. To accomplish tt
goals, Perona embeds the orientatian the plane via the map

w = [cog#), sin(H)].

The orientation vectow is then alternately diffused for a short time and projected onto th
unit circle to give an algorithm that is remarkably similar to diffusion-generated motion ft
filaments.

Perona also provides a simple discretization for his method and gives a variety of in
esting examples that demonstrate that his approach eliminates noise and gives useful i
information at multiple scales. See [26] for full details.

7. SUMMARY AND DIRECTIONS FOR FUTURE WORK

Convolution—thresholding is a flexible, general framework for defining interface motior
In this approach, an interface is represented as the singular set of a suitable represe
function, and the function is updated in time by alternatively convolving with a smootl
ing kernel and thresholding (or, more generally, projecting back onto the restricted se
values) to obtain an updated valid representing function. This approach is intrinsically c
crete in time and is amenable to fast, accurate spatial discretization via Fourier transf
techniques. The resulting schemes tend to be simple, and yet they can describe com
curvature-dependent flows that include topological changes and triple-point motions. -
approach also generalizes to describe the curvature motion of filaments or arbitrary din
sion subsurfaces within higher dimensional spaces. The method has illuminating relati
to Huygens' principle, cellular automata, and reaction—diffusion/phase-field PDE models
interface motion and can provide a valuable alternative formulation in various applicatic
or theoretical investigations.

A key area of future work is thénverseproblem (cf. [14]): given a surface-motion
law, find a kernel (or kernels) and some thresholding technique that achieves that |
As an example, we are currently seeking methods for the anisotropic curvature-depen
motion of junctions such as those arising in materials science applications. Other arec
interest include the development of new methods for more general (or possibly nonlo
motion laws or methods for constrained curvature-dependent flows (cf. [4]). More genera
statistical methods offer great promise in modeling a variety of interesting experimer
processes. See Ringagehal.for an example [27].

Another interesting theoretical problem is to establish the range of validity of the me
principle from Section 6, i.e., to determine when a phase-field or reaction—diffusion ty
of PDE model has the same limiting behavior as its diffusion-generated motion analo
[35]. When applicable, this principle allows interface or filament motion to be immediate
translated into the simpler convolution—thresholding schemes.
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It is also of great interest to couple convolution—thresholding schemes to physical
biological processes occurring off the interface. An example of such a coupling was gi
in Section 5.5 where the thresholding level was set according to a second recovery vari
to simulate an excitable medium, but it remains to fully develop such coupling strateg
for general classes of coupled interface—external equation models.

Computationally, the algorithms of Ruuth [32] give a simple and efficient means f
treating most curvature-dependent motions. However, the method can be inefficient
motions which are independent of curvature since the corresponding kernels have sm
supports and so require more spatial resolution than those for curvature motion [33]. T
an interesting research project would be to develop fast algorithms for these small kerr

Theoretically, rigorous treatments of two-phase motions have been developed in ¢
mension one (e.g., curves in two dimensions or surfaces in three dimensions). Tt
proofs assume positive, symmetric kernels and a fixed threshold [1, 6, 17, 18]. For
tensions to arbitrary codimension, multiple junctions, and variable thresholds, a vari
of heuristic arguments, asymptotics, and experimental evidence supporting converg
have been developed [21-23, 31, 33, 35], but a rigorous theory has proven elusive
deed, many interesting kernels have not yet been the subject of systematic numerice
vestigation. These include nonsymmetric kernels and kernels involving both positive
negative components. Also, the extremely simple volume-preserving motion by me
curvature algorithm described in Section 4.5 would be an excellent target for a converge
proof.

As can be seen from this brief review, convolution—thresholding methods for interfe
motion have attracted considerable theoretical and computational interest and have i
esting relations and contrasts with other methods for surface evolution. They have ar
independently in varied fields of research, and they provide an interesting bridge conn
ing geometric, PDE, and cellular automata models that produce moving interfaces.
anticipate a great amount of future development as these connections and application
explored more thoroughly.
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