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Convolution–thresholding is a new approach to describing interface motion that
unifies and generalizes Huygens’ principle, threshold growth cellular automata, and
reaction–diffusion equations. Convolution methods have many desirable properties,
including automatic capture of topological change, production of curvature motion
without explicit computation of curvature, natural extension to the motion of triple-
point junctions, and fast, accurate implementation. In this paper, we summarize the
relation of convolution–thresholding schemes to previous methods, and we review
the theoretical and algorithmic development of this approach. We also review re-
cent applications to computer vision, developmental biology, excitable media, and
material science. c© 2001 Academic Press
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1. INTRODUCTION

There are many phenomena in which sharp interfaces form, persist, and propagate. No-
table examples include optical or acoustic wavefronts moving through materials, the growth
of crystalline materials, the deblurring of photographic images, the evolution of detonation
fronts in explosive materials, and the propagation of excitation waves in heart and neural
tissue.

Modeling these processes often leads to equations of motion for a surface moving with
a normal speed that depends on the surface geometry. However, these models—and their
numerical solution procedures—are complicated by the fact that the interfaces can merge
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or break up, or form junctions and more complicated networks. It is challenging to devise
models and associated numerical algorithms that are simple, yet robust enough to capture
such topological changes. Our focus here is on a variety of novel ways of describing
interface motion that meet this challenge, and which can be unified through the idea of
convolution–thresholding.

While investigating the problem of evolving surfaces with junctions, Merrimanet al.
[22, 23] developed the diffusion-generated motion by mean curvature algorithm, which is
the focus of Section 3. This simple algorithm automatically evolves surfaces with a normal
speed equal to mean curvature without ever directly computing the mean curvature. Topo-
logical changes such as merger and breakage are automatically handled without any special
algorithmic procedures. Accurate, efficient discretizations are possible using adaptive res-
olution and fast Fourier transform techniques [32]. Finally, and perhaps most remarkably,
the algorithm extends directly to the motion of triple-point junctions and arbitrary networks
of surfaces [21–23, 31].

Independent of the work on diffusion-generated motion, a variety of interesting related
methods have arisen in cellular automata modeling. (See Section 5.) Of these models, the
“threshold growth dynamics” of Gravner and Griffeath was among the first to be rigorously
analyzed [12]. In threshold growth dynamics, an unoccupied site of the lattice becomes
occupied if a certain proportion of its neighbors are occupied, while occupied sites are
never vacated. Although simple, these automata rules generalize in a natural way to a
variety of systems arising in developmental biology and excitable media.

Another well-known class of models for evolving interfaces is the Ginzburg–Landau (or
more generally the reaction–diffusion or phase field) partial differential equation (PDE)
models. These models typically represent the interface as a rapid transition layer in some
state—or “phase”—parameter which evolves by a (strong) reaction (weak) diffusion equa-
tion. In such a system, the state is driven to the nearest equilibrium value of the reaction,
except in the thin transition layer in which the diffusion dominates. In the asymptotic limit of
infinitely strong reactions, these fronts shrink to ideal surfaces that move by mean curvature
or other various geometric motion laws.

Underlying each of these models are the two processes of local averaging (or diffu-
sion) and thresholding (or projecting to a discrete set of values) applied to a represent-
ing function for the surface of interest. This can be abstracted and generalized to the
convolution–thresholding motion described in Section 4. In essence, a set (and thus its
bounding surface) is evolved by convolving its characteristic function with an averaging
kernel and then thresholding to recover an updated characteristic function. Generaliza-
tions for multiple kernel functions or more complicated thresholding schemes are clearly
possible. These generalconvolution–thresholding methodsprovide a natural model in-
termediate between cellular automata and PDEs—it turns out they can simultaneously
achieve the long length scale limit of automata and the short length scale limit of reaction–
diffusion PDEs, both of which are difficult limits to analyze theoretically or investigate
numerically.

The outline of the paper follows. In Section 2 we review the standard Huygens’ principle
and its generalizations. Section 3 describes the diffusion-generated motion by mean curva-
ture algorithm and discusses its discretization. In Section 4, we show how these methods
can be generalized to give convolution–thresholding motion. This section also provides an
overview of the class of obtainable motion laws, discusses fast discretization methods, and
reviews some interesting related methods. Section 5 describes threshold dynamic models
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and related automata arising in developmental biology and excitable media applications. It
is also shown that convolution–thresholding methods arise naturally as the fine grid limit
of these automata and that the fast discretizations developed for convolution–thresholding
motion once again apply. In Section 6, we compare convolution–thresholding motion and
phase-field methods and review a recent convolution–thresholding method for evolving
filaments which can be motivated as a formal splitting for the complex Ginzburg–Landau
equation. A closely related method for the multiscale treatment of images is also reviewed
here. Finally, Section 7 concludes with a short summary and a description of some of
the interesting open problems related to convolution–thresholding methods for interface
motion.

2. HUYGENS’ PRINCIPLE

In this section, we review Huygens’ principle constructions for both curvatureindependent
and curvature-dependent motions of interfaces. Later sections will show how these intuitive,
geometrical methods are precisely a special case of convolution–thresholding methods.

2.1. Huygens’ Principle for Constant Normal Velocity

The classical Huygens’ principle is a geometric construction for moving a curve (in two-
dimensions, or in general a codimension 1 surface) with a constant normal velocity,c. The
principle states that the evolved curve at a time1t can be obtained from the initial curve
by drawing discs of radiusr = c1t which are centered on the initial curve. The forward
envelope of these discs is the curve at timet = 1t .

For our purposes, it is more convenient to draw discs of radiusr = c1t , centered so they
are entirely on one side of the curve and tangent to it. The locus of the disc centers forms
the new curve position after a timet = 1t . See Fig. 1.

2.2. Huygens’ Principle for Motion by Mean Curvature

The classical construction can be modified to produce a motion where the surface normal
velocity is proportional to the local mean curvature. Instead of the usual procedure, position

FIG. 1. Huygens’ principle.
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FIG. 2. Huygens’ principle for a curvature-dependent motion.

each disc so that exactly half itsarea lies inside the curve to be evolved, and then take the
locus of all disc centers as the new curve, as illustrated in Fig. 2. Although this is just a slight
modification of the standard Huygens’ principle shown in Fig. 1, it yields a qualitatively
different type of motion.

Clearly the most curved portions of the interface are displaced the most by this modified
process, so that it induces some form of curvature-dependent motion. A simple geometric
analysis (see Fig. 3) shows that if the local radius of curvature of the curve isR, and we
position a disc of radiusr ¿ R so that it is cut exactly in half (by area) by the curve,
then the disc center is displaced normal to the curve by a distanced ∼ r 2/R. We would
like this displacement to represent one time step of motion by mean curvature, so we want
d = vn1t , with vn = κ = 1

R. This will indeed be the case as long asr ∼ √1t . Note that
this also explains why this geometric procedure (Huygens’ principle for mean curvature)
uses discs of radiusr ∼ √1t , while that for constant motion uses discs of radiusr ∼ 1t .
(This distinction has practical importance for the convolution-based numerical implemen-
tations discussed later, since more spatial resolution is required to treat the smaller discs of
the constant motion.)

FIG. 3. The geometry of Huygens’ principle for motion by mean curvature.
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FIG. 4. Huygens’ principle with a general shape and a nonzero fractionλ.

2.3. Generalized Huygens’ Principles

Variations on Huygens’ principle can be obtained by using shapes other than discs,
taking the locus of designated points other than the disc centers, and positioning the shapes
fractionally outside the curve, rather than entirely outside or half in and half out. Combining
these observations, we can obtain a generalization of the geometric Huygens’ principle
(see, e.g., Fig. 4):

Select an arbitrary shape (generalizing the disc of the standard principle) and an “origin point” for the shape
(generalizing the disc center), which can be any point inside or outside the shape. Allow the shape and its
associated origin to be moved in the plane only by rigid translation (not rotations). Given an initial curve,
everywhere possible position the shape so that a fractionλ of its total area is enclosed by the curve. Then the
updated curve is the locus of all the corresponding origin points.

Clearly, by using nonsymmetric shapes anisotropic motions can be derived and by varying
the fractionλ the relative importance of the curvature component can be changed. This
approach was fully developed, including explicit formulas for the limiting surface evolution,
in the recent work of Ishiiet al.[18]. These and other theoretical results will be summarized
in Section 4 after another closely related method is discussed—diffusion-generated motion
by mean curvature.

3. DIFFUSION-GENERATED MOTION BY MEAN CURVATURE

The diffusion-generated motion algorithm introduced in [22, 23] is a surprisingly simple
procedure for approximating motion by mean curvature of a surface without computing
curvature. In this section we give the basic algorithm and its extension to surfaces with
multiple junctions. Later sections will show how this procedure is another special case of
convolution–thresholding. We also present efficient discretization techniques for diffusion-
generated motion which have direct extensions to the general convolution–thresholding
schemes.

3.1. The Basic Method

It is intuitively clear that if we allow a set of points to “diffuse,” sharp corners rapidly
smooth out (e.g., Fig. 5). Based on this observation, we might expect that diffusion can be
used to evolve the boundary of a set in a curvature-dependent way.
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FIG. 5. Sharp corners are rapidly smoothed out by diffusion.

Consider, for example, settingχ equal to the characteristic function for some initial
region. We then apply diffusion toχ ,

∂χ

∂t
= ∇2χ

and consider the evolution of the12-level contour. Rewriting using local polar coordinates
with origin at the center of curvature (see Fig. 6),

∂χ

∂t
= 1

r

∂χ

∂r
+ ∂

2χ

∂r 2
+ 1

r 2

∂2χ

∂θ2
,

we find that the motion is dominated by the radial advection and diffusion terms. (The
remaining term involvingθ -derivatives vanishes to highest order, sinceχ is locally a function
of r only, independent ofθ .)

Taking a radial view of the evolution (Fig. 7), we find that the first term simply advects
the initial profile with a speed1r = κ, while the second diffusion term smears out the profile.
Because the smearing is symmetric, however, it does not affect the1

2-level contour. Thus we
are left with an advection–diffusion equation which advances the level set1

2 with a speed
equal to the local curvature,κ.

Using this simple intuition, an algorithm for moving an interface by mean curvature can
be constructed [22, 23]:

ALGORITHM DGM (Two Regions).

FIG. 6. Local polar coordinates with origin at the center of curvature forX.
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FIG. 7. Radial view of the time evolution. The radial advection term advects the initial profile with a speed
equal to the local curvature (dashed), while the radial diffusion term merely contributes a smearing to the final
result and does not affect the1

2
-level contour.

GIVEN: An initial region R.

BEGIN
(1) “Initialize”: Set χ̄ equal to the characteristic function for the regionR.
(2) Repeat for all steps:

(a) “Diffuse”: Starting from ¯χ , evolveχ for a time1t according toχt = ∇2χ .

(b) “Threshold”:χ̄ =
{

1 if χ > 1/2

0 otherwise.
END

The location of the interface is given by the boundary of the set defined by the characteristic
functionχ̄ , or by the1

2 level of the smoothχ .
Notice that this procedure can be described informally as diffusing the set for a short time;

and then thresholding at the12 level to obtain a new set. As we have seen, such a diffusion
will cause a curvature-dependent blurring of the set boundary, and a formal analysis of
the diffusion equation [21–23] shows that this should result precisely in motion by mean
curvature. Indeed, an interesting variety of rigorous proofs have been given to show that
this simple algorithm converges to motion by mean curvature as the time step goes to zero
[1, 6, 18]. Note that the rate of convergence for smooth interfaces is first order and that more
rapid convergence is often possible using extrapolation. See [32].

This algorithm has several remarkable properties: Motion by mean curvature is obtained in
any number of dimensions without ever directly computing the mean curvature. Topological
mergers such as pinch off, which occur in higher dimensions, are captured with no special
algorithmic procedures. Note also that motion by mean curvature is a nonlinear evolution,
and yet the diffusive evolution is entirely linear, with the only nonlinear part of the algorithm
being the final, trivial, thresholding step.

Perhaps most remarkable, this procedure has a direct extension to the motion of multiple
junctions. This extension will be the focus of the next section.

3.2. Extension to Multiple Junctions

Diffusion-generated motion has a direct extension to surfaces with multiple junctions.
Let the intersecting surfaces partition the domain into regions with characteristic functions
χ1, χ2, . . . , χN . Note that

∑
χi = 1 everywhere, reflecting the partition. We independently

diffuse each region—i.e., convolveχi with the Gaussian—to obtain smoothed-out character-
istic functionsχi (1t). Note that these still sum to one, by the linearity of the convolution:
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∑
χi (1t) =∑ K ∗ χi = K ∗∑χi = K ∗ 1= 1. Thus the smoothed-out characteristic

functions still partition the domain into “fuzzy” sets. To obtain a partition into geometric
sets, we simply define seti to be the set on whichχi (1t) is greater than all the other
smoothed-out characteristic functions.

This approach leads to the following algorithm for the motion by mean curvature of
multiple regions:

ALGORITHM DGM (Multiple (r ) Regions).

GIVEN: Several regionsRj , 1≤ j ≤ r , which divide the domainÄ = ⋃1≤ j≤r Rj .

BEGIN
(1) “Initialize”: Set each ¯χ j equal to the characteristic function for the regionRj .
(2) Repeat for all steps:

(a) “Diffuse”: Starting from ¯χ j , evolve eachχ j for a time1t

according to∂χ j

∂t = ∇2χ j .

(b) “Threshold”:χ̄ j =
{

1 if χ j = max1≤k≤r {χk}
0 otherwise.

END

For any timet , the interfaces are given naturally as the boundaries of the characteristic sets.
Note that in the case of two regions, i.e., a set and its complement, this reduces to the original
algorithm forχ1 alone becauseχ2 = 1− χ1 is not an independent quantity. It remains an
open problem to prove that this algorithm converges to motion by mean curvature for the
interesting case of three or more regions.

Because the original diffusion-generated-motion algorithm uses a symmetricalχ com-
parison, it produces symmetrical triple-point junctions. To obtain arbitrary desired junction
angles a nonsymmetrical comparison can be used, as described in [21, 23, 31]. This approach
has been further generalized by Ruuth [31] to produce a normal velocity which depends
on a positive multiple of the curvature of the interface plus the difference in bulk energy
densities for prescribed junction angles (see Fig. 8). Similarly to the basic algorithm, these
generalizations naturally treat topological merging and breaking and produce no overlap-
ping regions or vacuums. Also similarly to the basic algorithm, there are no rigorous results

FIG. 8. The interfaces,0i j , move with a velocityvi j = γi j κi j + ei j and are subject to anglesθ1, θ2, θ3.
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concerning these methods when multiple junctions occur, but the numerical experiments in
[30–32] demonstrate their convergence.

3.3. Efficient Discretizations

As outlined, diffusion-generated motion is only discrete in time. We now discuss possible
spatial discretizations for the method. Most important is that the efficient spectral meth-
ods described here have direct extension to the general convolution–thresholding methods
described in later sections.

3.3.1. Finite Difference Methods

A very simple way to spatially discretize diffusion-generated motion is to use a finite-
difference method on a fixed grid [22, 23]. Unfortunately, this simple approach leads to
several problems [23, 32].

In particular, the time step1t must be large enough so that the motion of the interface
over each step can be resolved by the spatial discretization. For the case of a finite-difference
discretization,the level set12 must move at least one grid point; otherwise the front will
remain stationary(see Fig. 9). This produces the restriction that

(speed of motion of the interface)×1t À grid spacing

κ1t À h, (1)

which is prohibitively expensive wheneverκ is small.
Furthermore, even when this restriction (1) is satisfied throughout space, an extremely fine

grid may be needed to achieve the desired accuracy. Consider, for example, the evolution of
a smooth surface (i.e., no junctions or self-intersections) according to diffusion-generated
motion. Here, a simple Taylor-series expansion can be used to demonstrate that anO((1t)2)
error in the position of the front is generated at each step [30]. If the functionχ is repre-
sented using a fixed grid then each thresholding produces an error which is comparable to
the mesh spacing; i.e., each thresholding step produces anO(h) error in the position of
the front. To preserve the overall accuracy of the method we must takeh = O((1t)2).
Using a uniform mesh, this leads toO(( 1

1t )
2d) grid points andO(( 1

1t )
2d) operations

per step ind dimensions, which is often impractical even for simple two-dimensional
applications.

As we shall see in the next section, these inefficiencies are easily overcome using adaptive
resolution and fast Fourier transform techniques.

FIG. 9. If the level set1
2

moves less than one grid point, the front remains stationary.
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3.3.2. A Spectral Discretization

The standard discretization of diffusion-generated motion can be expensive, even for
simple two-dimensional applications. Fortunately, much faster results can be obtained using
a simple spectral method on adaptive grids [32].

To begin, a method is needed to solve the heat equation,

χt = ∇2χ,

repeatedly over intervals of length1t . This is accomplished using a Fourier series. Notice
thatχ is initially discontinuous so it will contain a high-frequency error from truncating the
Fourier series. However, we only requireχ after a time1t . After a time1t , high-frequency
error modes have been damped out. Since the problem is linear, the various modes do not
interact—thusthere is never a need to approximate the high-frequency components ofχ .
Thus a Fourier series is an excellent choice, because far fewer basis functions are required
than might otherwise be expected.

The thresholding step is also straightforward. Using the usual orthogonality conditions, it
is easy to show that the Fourier coefficients of the characteristic function after thresholding
are

cjk =
∫ ∫
Rt

exp(−2π i j x ) exp(−2π iky) d A, (2)

where

Rt =
{

x: χ(x, t) >
1

2

}
is the approximation to the phase we are following.

To complete the discretization, the integrals (2) must be evaluated. These are accurately
and efficiently treated using the quadrature methods described in [32]. Briefly,

• If R(t) is a square, the integration step is carried out exactly. More general regions
are treated by dividing the domain into small squares (see, e.g., Fig. 10) and summing the
contributions from each. At the finest level, the contributions to the Fourier coefficients are
approximated using a quadrature over triangles.
• During mesh refinement, a large number of unequally spaced function evaluations are

required (see, e.g., Fig. 10). Because the fast Fourier transform requires an equally spaced
grid, fast implementations use a recent unequally spaced fast Fourier transform method
[2]. This method is also used for the rapid evaluation of the Fourier sums that arise in the
quadrature steps of the algorithm.

We now consider how this discretization compares with the usual finite-difference approach.

3.3.3. Comparison

This spectral discretization is preferred over finite-difference discretizations of diffusion-
generated motion for several reasons [32]. These reasons are outlined below.

1. A lattice-based method must satisfy (1) globally, or part of the front may erroneously
remain stationary. By recursively refining near the interface and interpolating at the finest
cell level, the spectral discretization eliminates this restriction.
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FIG. 10. Integration is carried out by dividing the domain into squares. Contributions from all but the finest
regions can be evaluated exactly.

2. An unwanted anisotropic component to the motion is generated whenever a regular
lattice is used since the front must travel an integer number of cells per time step. No such
restriction occurs with the spectral approach since interpolation is used to locate the front
at the finest cell level.

3. A lattice-based method produces an irregular error which makes the construction of
higher order accurate, extrapolated results impractical. Because the spectral discretization
uses interpolation to locate the front at the finest cell level, the error arising from the thresh-
olding step is relatively small. In many instances, this makes an accelerated convergence to
the limiting motion law possible using Richardson extrapolation in the time-step size. See
[32] for further details.

4. Far fewer operations are required to obtain an accurate representation of the front
using the spectral discretization. Here, the proposed method requires only

O

(
1

1t
log2(1t)

)
operations per step to preserve the overall accuracy of the method [32]. This compares very
favorably to the result for smooth curvesO(1/(1t)4), which was derived in Section 3.3.1.

In practice, finite-difference or pseudo-spectral methods on a uniform grid are often ade-
quate for obtaining crude but illustrative results (e.g., [21–23, 35]). However, whenaccurate
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solutions are sought (≤3% relative error) the spectral discretization is preferred. Indeed,
a finite-difference discretization on a uniform grid often requires hours of computation to
obtain the same relative error that a spectral discretization obtains in a few seconds. See
[32, 34] for some sample calculations illustrating this property.

4. CONVOLUTION–THRESHOLDING MOTION

We now show how the general framework of convolution–thresholding motion of surfaces
unifies the geometric Huygens’ principles with the analytic method of diffusion-generated
motion by mean curvature. This section also gives recent generalizations of the basic method
and discusses their discretization. We also review related methods that have appeared in the
literature.

4.1. Huygens’ Principle as Convolution–Thresholding

The Huygens’ principle described in Section 2 is a geometric technique for moving a
curve or surface. As the first step toward generalization, this geometric construction can
be translated into an analytic form. We represent curves as the boundaries of regions, and
in turn represent regions by their characteristic functions, i.e., functions that are 1 on the
region and 0 off the region. We represent the discs (or any other shape) used to advance the
front by their characteristic functions as well. Suppose the original region has characteristic
functionχ , and letK be the characteristic function for the motion-generating shape, scaled
so that it has unit mass. Let∗ denote the convolution,

χ ∗ K (x) =
∫

R2
χ(y)K (x− y) dy. (3)

Then for constant normal motion, the updated region in Huygens’ construction can be
defined as

{x: χ ∗ K (x) > 0} , (4)

and the updated curve is the boundary of this region. Similarly, for motion by mean curvature
the updated region in Huygens’ construction can be defined as{

x: χ ∗ K (x) >
1

2

}
. (5)

For example, for the Huygens’ principles using discs in 2-D, the kernel is the (normalized)
characteristic function for a disc of radiusr , centered at the origin,

K (x) =
{

1
πr 2 if |x| < r

0 otherwise,
(6)

wherer ∼ √1t for motion by mean curvature, orr ∼ 1t for constant normal motion.
Thus, the geometric Huygens’ principle is equivalent to the analytic procedure of con-

volving the characteristic function for the original region with an appropriate kernel function
and obtaining a new characteristic function from this via thresholding.
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4.2. Diffusion-Generated Motion as Convolution–Thresholding

The diffusion-generated motion [22, 23] can also be viewed as a convolution–
thresholding algorithm. If the initial surface bounds a region with characteristic functionχ ,
then the solution to the linear diffusion equation at a time1t later isχ ∗ K , whereK is a
Gaussian of width

√
1t ,

K (x) = K1t
G (x) ≡ 1

4π1t
exp

(
− 1

41t
|x|2
)
,

and the updated surface is the boundary of the region{
x: χ ∗ K (x) >

1

2

}
. (7)

Indeed, any positive, radially symmetric kernel may be used in place of the Gaussian to
obtain a convolution-generated mean curvature motion, as was pointed out by Merriman
et al. [22] and proven rigorously by Ishii [17]. Thus diffusion plays no deep special role
in generating the motion by mean curvature and probably obscures the greater significance
of the convolution. The main value of the diffusion PDE description of the convolution
process is that it allows a convenient formal analysis, as was indicated in Section 3, and it
highlights the connection with phase-field models, as described in Section 6.

4.3. Convolution–Thresholding Motion

Based on the update rule (4), it is clear that we are interested in more general forms of
convolution-generated motion. In particular, it is natural to consider the following general-
izations of (7):

1. Allow different convolution kernel functions,K . The method formally allows arbitrary
kernel functions, and asymmetrical kernels can be used to produce anisotropic motion laws,
as originally suggested in [22]. Without loss of generality, we shall assume that the kernel
has been normalized to satisfy

∫
K (x) dx = 1.

2. Allow a general threshold,λ, in {x: χ ∗ K (x) > λ}. This provides a continuum of
convolution–thresholding methods parameterized byλ ∈ [0, 1) with λ = 0 corresponding
to the standard Huygens’ principle for constant motion (see [33]), andλ = 1

2 corresponding
to motion by mean curvature. In general,λ can also be allowed to depend on other quantities.
For example, a variety ofvn = a+ bκ diffusion-generated motions can be obtained with
λ = 1

2 + c
√
1t [18, 21, 31], soλ = λ(1t) is a useful form. More generally,λ may be

selected locally as a function of the normal direction defined by the level sets ofK ∗ χ to
achieve an interesting variety of anisotropic motions [33].

These generalizations produce semidiscrete methods—i.e., continuous in space but dis-
crete in “time”. To determine the corresponding continuous dynamics, we must somehow
introduce a time step and clarify what it means to take the small-time-step limit (assuming
such a limit exists). Intuitively, the time step is determined by the effective size of the
support ofK , since the larger the effective support ofK , the further its convolution will
move the set boundary. Thus the small-time-step limit is obtained by scaling downK in a
suitable fashion. More precisely, let us scale the fixed kernelK (x) by the mass-preserving
form K (x/r )/r d, so that the effective radius of its support scales liker ¿ 1. By convolving
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this scaled kernel withχ and thresholding the result atλ, the set boundary is displaced
by an amount that is some function ofr , s(r ). If we demand that in the limit of small
r this displacement be one time step of some limiting motion law,s(r ) = vn1t , this fixes
the relation between the size of the kernel,r , and the time step,1t . Note, in particular,
that if K is a Gaussian kernel with effective support of sizer , this general procedure yields
1t ∼ r 2. This is precisely the scaling relation between kernel size and time step used in the
diffusion-generated case discussed above, although there it can also be motivated by the
simple fact that diffusion for a time1t will smear (and thus move) the set boundary over a
distancer ∼ √1t .

4.4. Obtainable Motion Laws

It is natural to ask what motion laws arise from convolution-generated motion and how
the radius of the kernel scales with1t .

In the case whereK is nonnegative andλ = 0, convolution-generated motion reduces to
Huygens’ principle for the curvature-independent motion described in Section 2. Notice in
particular that if we assume that each update corresponds to one time step of length1t ,
thenN and henceK have radii which scale like1t .

Another interesting case occurs in two dimensions whenλ = 1
2 and K is the scaled

characteristic function of a symmetric regionN (i.e.,N = −N ). If we definer (θ) to be
the polar representation of the boundary ofN , then it is easy to show that a leading-order
approximation of the displacement of a smooth initial boundary isr 2(θ)κ/6 [33]. Thus
general “anisotropic curvature motions” of the form

vn = b(θ)κ (8)

are obtained simply by taking

r (θ) =
√

6b(θ)1t .

Similar to the case of constant motion, this algorithm also has a simple geometric version
[33]:

Using only translations, place copies ofN so that exactly half of their area lies inside the original region.
The locus of shape centers forms the boundary of the updated set.

A combination of these two types of motion can be obtained by varying the thresh-
old, λ. This class of methods has been studied in the recent and comprehensive work
of Ishii et al. [18] for the case whereλ is a constant orλ = λ(1t). They give explicit
formulas for the limiting surface normal velocityvn in terms of various moments of the
kernel function, in any number of dimensions. Moreover, they also give rigorous proof that
the convolution-generated motions converge to their statedvn motion laws in the limit as
1t → 0.

One notable implication of their results is that it is impossible to obtain many interesting
curvature-dependent motions in three dimensions with this class of generalizations.3 For

3 Note that the converse is also true. It is not possible to approximate many interesting convolution–thresholding
combinations using finite-motion laws. See Section 5.4 for an example.
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example, consider motion byweighted mean curvature(e.g., [16, 38]),

vn =
(
γ + ∂

2γ

∂θ2
1

)
κ1+

(
γ + ∂

2γ

∂θ2
2

)
κ2, (9)

whereγ represents the anisotropic surface energy,{κi } are the principal curvatures of the
surface, and{θi } are the associated local angles made by the normal vectors along the
principle circles of curvature. Such motions can only be obtained ifγ is constant—in
which case the original diffusion-generated motion algorithm applies. The origin of this
limitation in more than two dimensions can be understood by a straightforward geometric
analysis [33]. Briefly, when a nonspherical Huygens’ shape is positioned to be some fraction
inside the surface, the principal curvatures of the surface have independent, and generally
different, influences. Thus the motion cannot depend only on the symmetrical combination
κ = (κ1+ κ2), and motion laws of the formb(n̂)κ with nonconstantb are not possible. The
same is true for other forms that require constrained combinations of principal curvatures,
such as the surface-tension-weighted mean curvature.

4.5. Extensions

To produce more general motions,λ may be allowed to depend on other quantities. For
example, in [33]λ is defined locally as a function of the normal direction to obtain motions
in two dimensions of the form

vn = a(θ)+ b(θ)κ,

whereb is nonnegative and continuous.
Even more generally, multiple-kernel algorithms may be desired since these provide a

convenient way to generate interface velocities that are unobtainable with single kernels
(e.g., anisotropic mean curvature motion in more than two dimensions). In this approach,
the characteristic function is convolved with multiple kernels,χ ∗ K1, χ ∗ K2, . . . , χ ∗ KN ,
and these are combined in some convex combination or differencing combination prior to
the thresholding stage. For example, suppose that we wish to evolve a surface according to
a normal velocity

vn = b(n̂)κ, (10)

where 0< bmin ≤ b(n̂) ≤ bmax. SetKmin equal to the heat kernel for

χt = bmin∇2χ

andKmax equal to the heat kernel for

χt = bmax∇2χ

for a time-step size of1t . Thresholding the convex combination

(1− c)χ ∗ Kmin+ cχ ∗ Kmax

at the level12 then produces a velocity proportional to mean curvaturefor any constant
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FIG. 11. A normal velocityvn = (1+
√

n2
1 + n2

2 + sin(πn1))κ.

0≤ c ≤ 1. (This observation follows from Ishii [17], since the effective kernel is positive,
symmetric, and decreases exponentially quickly away from the origin.) In fact, it is easily
shown (cf. [21]) that a normal velocitybκ is obtained if

c = b− bmin

b− bmin+
√

bminbmax+ b
√

bmin/bmax
.

To produce motions of the desired form (10), we simply selectb = b(n̂) locally as a function
of the normal direction of the level sets ofχ ∗ K . See Fig. 11 for an example.

As a final observation, nonlocal choices forλ also produce interesting flows. For exam-
ple, volume-preserving motion by mean curvature [3, 29], i.e.vn = κ − κ̄ whereκ̄ is the
surface average of the mean curvature, is realized by selecting the level surface ofχ ∗ K
that encloses the same volume as the original set in diffusion-generated motion, instead of
the 1

2 level [30]. Convergence of the three procedures discussed in this section has been
demonstrated numerically, but not proven analytically. Given its simplicity, it would be es-
pecially interesting to obtain a proof for the volume-preserving diffusion-generated motion
by mean curvature.

4.6. Numerical Approximation

Perhaps the most obvious method for approximating convolution generated motion is
pseudospectrally. Using this approach, functions are represented by their values on a
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regular lattice of grid points. This makes the thresholding step trivial since it can be carried
out pointwise. The convolution step is also straightforward since it reduces to a multiplica-
tion in Fourier space using fast Fourier transform (FFT) methods. Unfortunately, however,
this simple approach is rarely adequate because of the strong grid effects discussed in
Section 3.3.3. See [34] for an example.

For fast, accurate results, the discretization given in Section 3.3.2 may be used. Briefly,
the characteristic function for the initial region and the kernel are approximated by Fourier
tensor products. Multiplying in Fourier space then gives a simple estimate for the convolution
product. The Fourier representation of the characteristic function for the updated region is
then determined using an adaptive quadrature method rather than a pseudospectral method.
Note that the convolution step acts as a filter, removing high-frequency components. Since
this convolution step is linear, the different Fourier modes do not interact and there is never
a need to treat the highest frequency components. Thus, an excellent approximation is
obtained using fewer Fourier modes than might otherwise be expected. See [33, 34] for
some examples and full details.

4.7. Related Methods

The “spatially continuous automata” of MacLennan [19] are another independent devel-
opment similar to diffusion-generated motion. They arise from cellular automata, again as
a method intended to capture the smoother, long-wavelength aspects of automata patterns.
MacLennan achieves this simply by taking continuous versions of the spatially discrete as-
pects of cellular automata evolution. The resulting method consists of taking a continuous
initial data function, evolving for a discrete time step by convolving it with a continuous
convolution kernel, and then applying a continuous pointwise sharpening step that tends
to undo some of the blurring of the convolution step. This procedure is quite similar to
diffusion-generated motion (and the general convolution–thresholding motion we present
in this section), except for one minor but crucial distinction. The simple asymptotics that
yield motion by mean curvature in diffusion-generated motion arise precisely because the
initial data are the discontinuous characteristic function, and because the sharpening step
is discontinuous, replacing the blurred-out characteristic function by a new discontinuous
characteristic function. Replacing these by continuous analogues destroys simple sharp in-
terface motions in the first few time steps. Thus, these spatially continuous automata do not
tend to yield well-behaved limiting interface motions amenable to asymptotic and rigorous
analysis, although they do produce an interesting and varied class of evolutions.

5. CONNECTION TO CELLULAR AUTOMATA MODELS

Cellular automata are discrete dynamical systems. They consist of a lattice of sites, each
of which may take on a finite number of “states,” or values. The site values evolve in
synchronous, discrete time steps according to an evolution rule that specifies the updated
value in terms of the current values at neighboring sites [44].

In this section we review a particularly fundamental class of automata models—the
threshold dynamics—and discuss some of their mathematical properties. As we shall see,
convolution–thresholding motion arises naturally as the fine grid limit of these automata,
giving a numerically and analytically tractable link between cellular automata models and
the smooth features of pattern dynamics. We conclude this section with extensions to models
for pattern dynamics in developmental biology and excitable media.



CONVOLUTION–THRESHOLDING METHODS 695

5.1. Connection to Threshold Dynamics

An important class of automata can be obtained by imagining each neighbor’s contribution
to be a simple “vote” for or against a certain state value of the site in question; any number
of affirmative votes above a certain threshold will yield that outcome. For example, consider
a simple voting automaton where there are two states, 1 and 0. A sum of the cell’s own vote
and that of its eight nearest neighbors is formed. Where this sum is greater than or equal
to the threshold valueλ the cell is assigned state 1; elsewhere it is assigned state 0. By denot-
ing the state of cell( j, k) at time stepn by Cn

jk , we obtain a simple analytic representation
for the automata model,

Cn+1
jk =

{
1 if

∑
−1≤ j ′,k′≤1 Cn

j− j ′,k−k′ ≥ λ
0 otherwise,

whereλ represents the threshold value.
More generally, each vote can be assigned some weight. LettingN ⊂ Z2 be the neigh-

borhood of interest andW be the matrix of weights, we obtain the update rule for threshold
dynamics,

Cn+1
jk =

{
1 if

∑
j ′,k′∈N Wj ′,k′Cn

j− j ′,k−k′ ≥ λ
0 otherwise.

(11)

Note that the functionC is precisely the characteristic function of a set on the lattice,
and the combination appearing above is precisely the discrete convolutionC ∗W with
the discrete kernel functionW. Thus these threshold automata can be viewed as discrete
versions of the convolution–threshold method. Moreover, they can also be viewed as dis-
crete approximations to continuum convolution–threshold models, and this is a convenient
framework for understanding the long-wavelength aspects of automata pattern formation,
as described in the next sections.

5.2. Connection to Limiting Shapes

A natural and very interesting problem is to find the limiting shapes for threshold dynamics
and related automata models. In an early paper, Packard and Wolfram [25] found that

Most two dimensional patterns generated by cellular automaton growth have a polytropic boundary that
reflects the structure of the neighborhood in the cellular automaton rule. Some rules, however, yield slowly
growing patterns that tend to a circular shape independent of the underlying cellular automaton lattice.

To derive a more detailed, rigorous theory, Gravner and Griffeath [12] developed and
studied a class of set-evolution algorithms of a form somewhat similar to that of the threshold
dynamics. In these “threshold growth dynamics” an unoccupied site becomes occupied if
a certain proportion of its neighbors are occupied, while occupied sites are never vacated.
The main goal of this work was to prove that such discrete evolution rules lead to a certain
asymptotic limiting shape for the evolving set as time (the number of iterations) goes
to infinity. Gravner and Griffeath accomplish this in full rigor and generality, both on a
continuum and a lattice.

In continuum terms, and from the viewpoint of convolution–thresholding motion as
developed in Section 4, we would say they were analyzing a discrete approximation to a
certain continuum convolution-generated motion. If the continuum convolution kernel were
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known, then an anisotropic surface normal velocity lawvn = a(n̂) could be determined from
the general kernel-velocity relations obtained in [18]. From this normal velocity, the limiting
shape would follow by the classical geometric Wulff construction [24]. As an aside, note
that at the continuum level it is a classical observation about crystal growth (dating back to
Gross in 1908) that such anisotropic velocity laws result in well-described limiting shapes
ast goes to infinity and that the geometric Wulff construction on the functionv(n) yields the
corresponding shape. However, rigorous proofs of this did not appear until recently. A simple
direct proof for the standard continuum formulation, as well as more detailed discussion and
references, are contained in a work of Osher and Merriman [24]. See also Ishiiet al. [18]
for recent results about the asymptotic shape of fronts propagating by threshold dynamics
and Gravner and Griffeath [13] for some simple growth rules with more complex iterates
which can nevertheless be determined by a combination of computer experiment and exact
recursion.

5.3. Relation to Finite-Grid Effects in Automata

Notice that threshold dynamics can be viewed as a method for evolving interfaces since
the boundary between state 0 and state 1 represents a crude interface that is evolved by each
update step of the algorithm (see, e.g., Fig. 12). An interesting question is how to select an
appropriate neighborhood and weight values to model a desired front motion.

In early cellular automata, a neighborhood of nearest neighbors on a uniform lattice
was selected. This choice has the advantages of speed and simplicity but is inadequate for
modeling many interesting natural phenomena. In particular, rules which use these small
neighborhoods are unable to model the effects of curvature on the speed of propagation [15,
42]. The reason for this can be understood by referring back to the section on the Huygens’
principle for mean curvature motion, where we showed that the size of the neighborhood
must scale likeO(

√
1t), which is much larger than theO(1t) scale neighborhoods required

for constant normal motion. These simple automata also add grid-based anisotropy to the
front motion [36]. See Fig. 13 for an excitable automaton with a strong grid-based anisotropy.

In an attempt to reduce grid effects, several modifications of cellular automata such as
random grids, stochastic local functions, and asynchronous evaluations have been designed.
Based on extensive numerical experiments, Sch¨onfisch [36] found that random grids are
the most useful of these, but that even these randomized methods have deficiencies from
a theoretical or a practical point of view. In particular, fluctuations in the front occur for
random grids and these “fluctuations become more prominent for higher values of threshold”
[36]. Thus, while randomized methods do produce a marked improvement in the isotropy
of automata, they are still not adequate for many problems of practical interest.

FIG. 12. Threshold dynamics can be viewed as a method for interface motion.
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FIG. 13. Spiral wave in the excitable automata model [5]. There are six states, 0 through 5. If any cell is at
state 5 it is set to state 0 (resting). Any other excited or refractory (i.e., nonzero) state is incremented by 1. If a cell
is resting and one of its four neighbors is excited (state 1), then the cell becomes excited; otherwise it remains at
rest. White corresponds to state 0 and black to state 5.

Alternatively, reduced grid effects and an improved curvature contribution can be obtained
by refining the lattice and taking larger neighborhoods [8–12, 15, 20, 39, 40]. In the limit
as the lattice is refined and larger and larger neighborhoods are used the summation step
leads to a convolution

C ∗W(x) =
∫

Rd

C(y)W(x− y) dy,

whereC is the characteristic function for the initial region in the fine grid limit andW:
Rd → R is the fine-grid large-neighborhood limit of the discrete convolution function. Thus
in the limit relevant for eliminating lattice effects from the automata, threshold dynamics
becomes convolution–thresholding (4).

Note that this means that the limiting motion can be accurately and efficiently treated
using the methods outlined in Section 4.6. Alternatively, it is possible to approximate the
sum pseudospectrally [34] or with a number of one-dimensional convolutions [9–11, 15,
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39, 40]. However, these methods use a pointwise thresholding so each step displaces the
front a distance which is comparable to the mesh spacing. This leads to strong grid effects
that are often unacceptable in practical applications.

5.4. Application to Developmental Biology

Threshold dynamics have arisen in a variety of disciplines in developmental biology [5].
For example, Young devised an interesting model of vertebrate skin patterns which is based
on local activation and inhibition [45]. This model assumes that cells are in one of two
states—differentiated (colored) and undifferentiated. Each differentiated cell produces two
diffusive chemicals: a short-range “activator” and a longer range “inhibitor.” The activator
stimulates the differentiation of nearby undifferentiated cells and the inhibitor stimulates
nearby differentiated cells to become undifferentiated. The combined effect of these two
chemicals is modeled as the weighted difference of concentrations.

To discretize this continuum model, Young uses an automaton. The convolutional form
of Young’s automaton is easily derived [34]. Simply set

χ : Rd → R

equal to the characteristic function for the differentiated region,Ä, and define the updated
region,Änew, to be the set

Änew= {x: χ ∗ K (x) > 0}

for the kernel function,K . The kernelK is not refined with1t since the time evolution of
the model is naturally discrete.

A variety of patterns are possible by varying the threshold, the size and symmetry of
the neighborhood, and the relative weights of the activator and inhibitor [45]. For exam-
ple, the steady patterns given in Fig. 14 arise from a kernel that represents the difference

FIG. 14. Isotropic pattern formation after 100 steps starting from a random checkerboard pattern. In this
case, the kernel consists of the difference of two Gaussian distributions:K (x, y) = 2500

π
exp(−2500|x|2)−

1250
3π

exp(− 1250
3
|x|2).
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of two symmetrical Gaussian distributions. Stronger contributions of either activator or
inhibitor tend to generate spotty patterns, while nonsymmetrical kernels can produce in-
teresting striped patterns [45]. Note that solutions to this convolution-based model are
efficiently obtained using the discretization methods of Ruuth [32]: Only 128× 128 basis
functions were required to obtain the steady patterns in Fig. 14 whereas a lattice of 2048×
2048 grid points is required using an automaton-based discretization. See [34] for further
details.

It is interesting to note that similar convolution–thresholding schemes have also arisen
in neural models for the visual cortex. For example, Ringachet al.develop a convolution–
sharpening model for the study of simple cells in the primary visual cortex of cats and
macaque monkeys [27]. Note, however, that these authors seek solutions to the interest-
ing inverseproblem of determining a kernel function, based on experimental input image
sequences and output spike trains. In particular, they propose a new subspace reverse cor-
relation technique which has several advantages over standard white-noise techniques,
including an improved signal-to-noise ratio, increased spatial resolution, and the possibility
of restricting the study to particular subspaces of interest. See also Swindale for a related
model for generating patterns of ocular dominance in the visual cortex [37].

5.5. Application to Excitable Media

In the biological and physiological literature, the best-known examples of cellular au-
tomata are the excitable media [5]. In an excitable system, a sufficient stimulus (i.e., above
some threshold value) leads to a large response followed by a period of recovery to a stable
rest state. Anexcitable mediumis a spatially distributed excitable system coupled in such a
way that excitation can provoke excitation in neighboring regions. Note that these systems
often experience a recovery orrefractoryperiod during which the medium is unable to be
reexcited regardless of the size of stimulus. Examples of excitable media arise in diverse
physical, chemical, and biological systems including models for nerve cells, muscle cells,
cardiac function, developmental biology, chemical reactions, and star formation. See [5, 39,
41, 43] for further details and references.

In early cellular automata models for excitable media, update rules were based on the
values in a neighborhood of nearest neighbors. Because this choice produces waves which
propagate at a speed of one cell per time step, several serious shortcomings occur [9, 42].
The most serious of these are [15, 40]:

1. The speed of propagation does not depend on the extent of recovery of the medium.
2. The speed of propagation does not depend on the wavefront curvature.
3. Unwanted anisotropy is added to the front motion. See, e.g., Fig. 13.

To treat the first shortcoming, more recent automata select threshold values according
to the recovery of the medium [8–11, 15, 20, 39, 40]. Averages over large neighborhoods
are used in an attempt to reduce unwanted anisotropy and to obtain an approximation to
the curvature component of the motion [8–11, 15, 20, 39, 40]. Typically, this averaging
step is carried out either directly [8, 20] (which is slow but general), using a number of
one-dimensional convolutions [9–11, 15, 39, 40] (which is efficient but specialized), or
pseudospectrally (which is efficientandgeneral—see [34]).

Consider, for example, the excitable automata introduced in Gerhardtet al. [9–11],
Weimar et al. [39, 40], and Henze and Tyson [15]. In these automata, update rules are
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chosen to mimic the dynamics of a two-variable system of reaction–diffusion equations,

∂u

∂t
= 1

ε
f (u, v)+ Du∇2u

∂v

∂t
= g(u, v)+ Dv∇2v,

whereε is a small parameter andf (u, v) andg(u, v) specify the local kinetics of the system.
Note that the scalaru (the excitation variable) changes on a time scale which is much faster
than the scalarv (the recovery variable). To derive the corresponding automaton model, the
reaction–diffusion system is split in a nonconvergent way into four steps which are carried
out sequentially (see [34, 40] for details):

1. The excitation variable is diffused.
2. The diffused excitation variable is thresholded to 0 (resting) or 1 (excited) according

to the value of the recovery variable, i.e.,λ = λ(v).
3. The recovery variable is evolved according to the local kinetics.
4. The result from Step 3 is diffused to give the updated recovery variable.

Finally, the discretization is completed by representingu andv by their pointwise values
on a regular lattice.

The advantages of this automaton over earlier models are clear. Since large neighborhoods
are used, the motion of the wavefront will exhibit fewer grid effects (i.e., reduced anisotropy)
and will have an improved dependence on curvature. Furthermore, the wave speed will
depend on the extent of recovery of the medium since thresholding is carried out according
to the value ofv. Indeed, simulation results reported for FitzHugh–Nagumo kinetics [15]
and the Oregonator model [40] agree well with PDE simulations for the period, wavelength,
and motion of the tip of the spiral wave for a wide range of parameters. When compared to
PDE simulations, the automata model has the practical advantage that it ignores the details
of the fast kinetics so that “the time step in the cellular automaton can exceed that in PDE
simulations by 1 or 2 orders of magnitude” [15].

Note that discretizations which use a pointwise thresholding should be avoided because
this type of thresholding displaces the front a distance which is comparable to the mesh
spacing. Fortunately, an improved discretization is easily obtained [34]. Steps 1 and 2
above are trivially treated using the discretization methods of diffusion-generated motion
(see Section 3.3.2). The evolution of the recovery variable is similar, except that we must use
Gaussian quadrature rather than exact integration to evaluate the Fourier coefficients. Similar
to automata-based discretizations, this approach allows very large time steps (relative to
PDE simulations) since it ignores the details of the fast dynamics. Relative to automata-
based discretizations, however, it is clear that this spectral discretization gives a much
more accurate treatment of the front since it recursively refines near the interface and
interpolates at the finest cell level. This allows for accurate estimates of quantities defined
on the interface and is particularly valuable for computing curvature-dependent motions.
Furthermore, discontinuities and unwanted anisotropy in the front motion are eliminated
since interpolation is used to locate the front at the finest cell level. Finally, this discretization
has the benefit that1t can be selected independently of other parameters, unlike the methods
proposed in [9–11, 15, 39, 40]. See Fig. 15 for an evolving spiral wave which was computed
using these fast methods.
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FIG. 15. Excitation variable for two interacting spiral waves. See [34] for details.
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6. CONNECTION TO PHASE-FIELD PDES

As we have seen in Section 4.2, diffusion-generated motion by mean curvature is a special
case of convolution–thresholding. We will show in turn how the diffusion-generated motion
methods are related to phase-field models and thereby establish the general connection
between convolution–thresholding and phase-field PDE models. We also show how this
connection can be used to motivate a recent approach for evolving filaments with a normal
speed equal to curvature. A closely related method for evolving orientation vector fields is
also reviewed.

6.1. Phase-Field and Diffusion-Generated Motion

The diffusion-generated motion procedure of alternately diffusing and thresholding is
reminiscent of an operator-splitting approximation of the (real-valued) Ginzburg–Landau
equation,

ut = ∇2u− 1

ε2
u(u2− 1).

In this PDE model, a reaction front of widthε develops, separating large regions of constant
equilibrium states for the reaction, i.e., whereu ≈ 1 or u ≈ −1. In the asymptotic limit
ε → 0 of a strong reaction and weak diffusion, the reaction front moves by mean curvature
[7]. At a formal level, by splitting the process into separate time steps of diffusion and
reaction, and driving the reaction step to equilibrium (i.e., setu(x) to be the closer of
the equilibrium states−1 and 1) we arrive at the diffusion-generated motion by mean-
curvature algorithm. Thus (as1t → 0) in this formal time splitting we actually achieve the
asymptotic mean-curvature motion of the phase-field model. Moreover, the split process is
considerably simpler than the nonlinear PDE dynamics, as it consists of just linear diffusion
and thresholding, and since there is no development of artificial smallO(ε) spatial length
scales.

From a theoretical and computational standpoint, this phase-field model has the benefit
that topological shape changes such as merger and pinch off are treated automatically.
Unfortunately, if phase-field PDEs are used in computation it is necessary to resolve the
thin O(ε) wide reaction zone to obtain numerical accuracy [23]. In contrast, diffusion-
generated motion does not have this artificial small scale. Thus diffusion-generated motion
has in effect passed to the asymptotic limit of the phase-field class of models, a simplified
and more accurate evolution scheme being obtained in the process.

More generally, this suggests the formal “meta-principle” that we could replace certain
phase-field PDE models whose asymptotic limit produces an interface motion by a diffusion-
generated motion procedure that achieves the limiting motion (in the1t → 0 limit) without
any artificial small spatial scales. The process would be to simply do the linear diffusion
evolution on a suitable representing function whose values are all equilibrium states, and
which is singular at the ideal interface, and then threshold by projecting smoothed-out values
back to the equilibrium states of the reaction. It is an open question as to how generally
valid this meta-principle is, but as is illustrated below for filaments, it seems to have some
general validity.
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6.2. The Diffusion-Generated Motion of Filaments

Interestingly, the idea of treating phase-field equations in a formal split-step manner can
also be used to produce a diffusion-generated method for the curvature motion offilaments
in three dimensions (or, more generally, 1-D filaments in any number of dimensions, or
evenk-D “filaments” moving in a higher dimensional space, for example by general vector
mean-curvature flow) [35].

Consider the complex Ginzburg–Landau equation

ut = ∇2u− 1

ε2
u(|u|2− 1),

whereu(x, t), x ∈ R3, is a complex scalar andε is a small positive parameter. In this PDE
model, the filament is given by the curve where|u| vanishes, which is in a tube of widthε
outside of which|u| ≈ 1. Notice that the Laplacian term dominates in a neighborhood of
width ε of the filament, while farther away the reaction term dominates (see Fig. 16). In the
asymptotic limitε → 0 of a strong reaction and weak diffusion, the filament moves in the
principal normal direction with a speed equal to its curvature [28].

Similar to the case of diffusion-generated motion, a formal splitting method can be applied
to the complex Ginzburg–Landau equation to obtain an algorithm for evolving filaments
[35]. This “diffusion-generated motion by mean curvature for filaments” alternates one
step of normalizingu (i.e., replacingu by u/|u|, which is a natural generalization of the
usual(χ − λ)/|χ − λ| thresholding step) with a step of diffusion over a time1t . The
corresponding algorithm evolves the filament in the Frenet normal direction to the curve
with a speed equal to curvature, and it naturally captures topological merging and breaking
of filaments without fattening curves. It also gives an improved computational efficiency
over direct numerical simulation of the Ginzburg–Landau equations because it obtains the
ε → 0 limit of the phase-field model without this artificial, small scale.

See [35] for a variety of interesting numerical experiments and generalizations as well
as an asymptotic analysis justifying the convergence of the algorithm.

FIG. 16. The filament is given byu = 0, or the center of winding ofu. In anε-neighborhood of the filament,
the Laplacian term dominates. Further away, the reaction term drivesu to u/|u|.
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6.3. Orientation Diffusions

Independent of the work on diffusion-generated motion, Perona [26] developed and
studied a diffusion-based algorithm for evolving orientation-like quantities. His motivation
was to develop methods appropriate for smoothing noisy data, analyzing images at multiple
scales, and enhancing discontinuities for applications in image processing and computer
vision. In particular, he was interested in problems where the important information is
contained in the orientation of lines, rather than the brightness values. To accomplish these
goals, Perona embeds the orientationθ in the plane via the map

w = [cos(θ), sin(θ)].

The orientation vectorw is then alternately diffused for a short time and projected onto the
unit circle to give an algorithm that is remarkably similar to diffusion-generated motion for
filaments.

Perona also provides a simple discretization for his method and gives a variety of inter-
esting examples that demonstrate that his approach eliminates noise and gives useful image
information at multiple scales. See [26] for full details.

7. SUMMARY AND DIRECTIONS FOR FUTURE WORK

Convolution–thresholding is a flexible, general framework for defining interface motions.
In this approach, an interface is represented as the singular set of a suitable representing
function, and the function is updated in time by alternatively convolving with a smooth-
ing kernel and thresholding (or, more generally, projecting back onto the restricted set of
values) to obtain an updated valid representing function. This approach is intrinsically dis-
crete in time and is amenable to fast, accurate spatial discretization via Fourier transform
techniques. The resulting schemes tend to be simple, and yet they can describe complex,
curvature-dependent flows that include topological changes and triple-point motions. The
approach also generalizes to describe the curvature motion of filaments or arbitrary dimen-
sion subsurfaces within higher dimensional spaces. The method has illuminating relations
to Huygens’ principle, cellular automata, and reaction–diffusion/phase-field PDE models of
interface motion and can provide a valuable alternative formulation in various applications
or theoretical investigations.

A key area of future work is theinverseproblem (cf. [14]): given a surface-motion
law, find a kernel (or kernels) and some thresholding technique that achieves that law.
As an example, we are currently seeking methods for the anisotropic curvature-dependent
motion of junctions such as those arising in materials science applications. Other areas of
interest include the development of new methods for more general (or possibly nonlocal)
motion laws or methods for constrained curvature-dependent flows (cf. [4]). More generally,
statistical methods offer great promise in modeling a variety of interesting experimental
processes. See Ringachet al. for an example [27].

Another interesting theoretical problem is to establish the range of validity of the meta-
principle from Section 6, i.e., to determine when a phase-field or reaction–diffusion type
of PDE model has the same limiting behavior as its diffusion-generated motion analogue
[35]. When applicable, this principle allows interface or filament motion to be immediately
translated into the simpler convolution–thresholding schemes.
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It is also of great interest to couple convolution–thresholding schemes to physical or
biological processes occurring off the interface. An example of such a coupling was given
in Section 5.5 where the thresholding level was set according to a second recovery variable
to simulate an excitable medium, but it remains to fully develop such coupling strategies
for general classes of coupled interface–external equation models.

Computationally, the algorithms of Ruuth [32] give a simple and efficient means for
treating most curvature-dependent motions. However, the method can be inefficient for
motions which are independent of curvature since the corresponding kernels have smaller
supports and so require more spatial resolution than those for curvature motion [33]. Thus,
an interesting research project would be to develop fast algorithms for these small kernels.

Theoretically, rigorous treatments of two-phase motions have been developed in codi-
mension one (e.g., curves in two dimensions or surfaces in three dimensions). These
proofs assume positive, symmetric kernels and a fixed threshold [1, 6, 17, 18]. For ex-
tensions to arbitrary codimension, multiple junctions, and variable thresholds, a variety
of heuristic arguments, asymptotics, and experimental evidence supporting convergence
have been developed [21–23, 31, 33, 35], but a rigorous theory has proven elusive. In-
deed, many interesting kernels have not yet been the subject of systematic numerical in-
vestigation. These include nonsymmetric kernels and kernels involving both positive and
negative components. Also, the extremely simple volume-preserving motion by mean-
curvature algorithm described in Section 4.5 would be an excellent target for a convergence
proof.

As can be seen from this brief review, convolution–thresholding methods for interface
motion have attracted considerable theoretical and computational interest and have inter-
esting relations and contrasts with other methods for surface evolution. They have arisen
independently in varied fields of research, and they provide an interesting bridge connect-
ing geometric, PDE, and cellular automata models that produce moving interfaces. We
anticipate a great amount of future development as these connections and applications are
explored more thoroughly.
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